Part	t 3: Paramet	ric and C	artesian Equations	ing Maths
	AS Le Pt 1: Equation of a Line	vel Pt. 2: Circles	A-Level Pt 3: Parametric and Cartesian Equations	
1. A curve is given by the parametric equations, $x = t^2 + 1$ $y = \frac{4}{t}$ a. Write down the co-ordinates of the point on the curve where $t = 2$ b. Find the value of <i>t</i> at the point on the curve with coordinates $(\frac{5}{4}, -8)$.				(2) (1)
2. A curve is Find the car	s given by the parametric e tesian equation of the curv	equations, x = 2t we.	$y = \frac{1}{t}$	(2)
3. A curve ha. Find a carb. Hence, sk	as paramteic equations, tesian equation for the cuv tetch the curve	x = 2t + 1	$y = t^2$	(2) (2)
4. A curve is Find the car	s given by the parametric e tesian equation of the curv	equations, $x = \sin \Theta$ ve.	$y = \cos 2\Theta$	(2)
5. A curve is Find the car	s given by the parametric e x tesian equation of the curv	equations, $x = 3 + 2\cos \Theta$ we.	$y = 1 + 2\sin \Theta$	(3)
 6. Write dow 7. The figure 	wn the parametic equations e below shows a sketch of x = 4 c	the curve C with particle $(t + \frac{\pi}{2})$	radius of (0, 0) and a radius of 5. arametric equations: $y = 2 \sin t$ $0 \le t \le 2\pi$	(2)

a. Show that $x + y = 2\sqrt{3} \cos t$ b. Show that a cartesian equation of C is $(x + y)^2 + ay^2 = b$

Co-ordinate Geometry

(3) (3)

8. The figure below shows a sketch of the curve C with parametric equations:

The curve crosses the *y*-axis at the point A and crosses the *x*-axis at the point B.

- a. Show that A has coordinates (0, 3)
- b. Find the *x* coordinate of the point B
- c. Find the cartesian equation of the curve

(2)

(3)

(2)