Co-ordinate Geometry
 Part 3: Parametric and Cartesian Equations

Pt 3: Parametric and Cartesian Equations

1. A curve is given by the parametric equations,

$$
x=t^{2}+1 \quad y=\frac{4}{t}
$$

a. Write down the co-ordinates of the point on the curve where $t=2$
b. Find the value of t at the point on the curve with coordinates $\left(\frac{5}{4},-8\right)$.
2. A curve is given by the parametric equations,

$$
x=2 t \quad y=\frac{1}{t}
$$

Find the cartesian equation of the curve.
3. A curve has paramteic equations,

$$
\begin{equation*}
x=2 t+1 \quad y=t^{2} \tag{2}
\end{equation*}
$$

a. Find a cartesian equation for the cave
4. A curve is given by the parametric equations,

$$
x=\sin \Theta \quad y=\cos 2 \Theta
$$

Find the cartesian equation of the curve.
5. A curve is given by the parametric equations,

$$
x=3+2 \cos \Theta \quad y=1+2 \sin \Theta
$$

Find the cartesian equation of the curve.
6. Write down the paramedic equations for a circle with a radius of $(0,0)$ and a radius of 5 .
7. The figure below shows a sketch of the curve C with parametric equations:

$$
x=4 \cos \left(t+\frac{\pi}{6}\right) \quad y=2 \sin t \quad 0 \leq t<2 \pi
$$

a. Show that $x+y=2 \sqrt{3} \cos t$
b. Show that a cartesian equation of C is $(x+y)^{2}+a y^{2}=b$
8. The figure below shows a sketch of the curve C with parametric equations:

$$
x=1-1 / 2 t \quad y=2^{t}-1
$$

The curve crosses the y-axis at the point A and crosses the x-axis at the point B .
a. Show that A has coordinates $(0,3)$
b. Find the x coordinate of the point B
c. Find the cartesian equation of the curve

