A-Level Unit Test: Coordinate Geometry Circles

1. Find the cartesian equation for the curve with parametric equations,

$$
\begin{equation*}
x=t^{3} \quad y=2 t^{2} \tag{2}
\end{equation*}
$$

2. Find the cartesian equation for the curve with parametric equations,

$$
x=2 \sec \Theta \quad y=4 \tan \Theta
$$

3. Write down the parametric equation for a circle with centre (a, b), radius r, where a, b, and r are constant and $r>0$.
4. A curve is given by the parametric equations,

$$
x=t-3 \quad y=4-t^{2}
$$

a. Find the cartesian equation of the curve
b. Sketch the curve showing any points where it meets the coordinate axes.
5. The curve C and has parametric equations:

$$
x=\sqrt{3} \sin 2 t \quad y=4 \cos ^{2} t \quad 0 \leq t \leq \pi
$$

Find a cartesian equation of C
6. The curve C and has parametric equations:

$$
x=2 \cos 2 t \quad y=6 \sin t \quad 0 \leq t \leq \frac{\pi}{2}
$$

a. Find the cartesian equation of the curve in the form

$$
y=\mathrm{f}(x) \quad-k \leq x \leq k
$$

Stating the value of the constant k.
b. Write down the range of $\mathrm{f}(x)$

Mark Scheme

1.

$x^{2}=\left(t^{3}\right)^{2}=t^{6}$	M1
$y^{3}=(2 t)^{3}=8 t^{6}$	M1
$y^{3}=8 x^{2}$	M1

2.

$\sec \Theta=\frac{x}{2}$	M1
$\tan \Theta=\frac{y}{4}$	M1
$1+\tan ^{2} \Theta=\sec ^{2} \Theta$	$\left(\frac{y}{4}\right)^{2}=\left(\frac{x}{2}\right)^{2}$
$1+\left(\frac{1}{4}\right.$	M1
$16+y^{2}=4 x^{2}$	
$y^{2}=4 x^{2}-16$	

3.

$x=a+r \cos \theta$	M1
$y=b+r \sin \theta$	M1

4a.

$t=x+3$	M1
$y=4-(x+3)^{2}$	M1

4b.
Shape M1
$(-5,0)$ and $(-1,0)$ M1
$(0,-5)$ M1

5.

$y=4 \cos ^{2} t \rightarrow \frac{y}{2}=2 \cos ^{2} t$	M1
$2 \cos ^{2} t=1+\cos 2 t=\frac{y}{2} \rightarrow \cos 2 t=\frac{y-2}{2}$	M1
$\sin 2 t=\frac{x}{\sqrt{3}}$	M1
$\sin ^{2} 2 t+\cos ^{2} 2 t=1$	M1
$\frac{x^{2}}{3}+\frac{(y-3)^{2}}{4}=1$	

6.

$x=2 \cos 2 t=2\left(1-2 \sin ^{2} t\right)=2\left[1-2\left(\frac{y}{6}\right)^{2}\right]$	M1
$x=2-\frac{4 y^{2}}{36}$	
$9 \mathrm{x}=18-y^{2}$	M1
$y^{2}=9(2-x)$	
$y=\sqrt{9(2-x)}$	M1
$y=3 \sqrt{2-x}$	M1
When $\mathrm{t}=\frac{\pi}{2}$	a/has Maths

$$
\begin{aligned}
& x\left(\frac{\pi}{2}\right)=2 \cos \pi=-2 \\
& -2 \leq x \leq 2 \\
& k=2
\end{aligned}
$$

6 b .
\square
$0 \leq \mathrm{f}(x) \leq 6$

