Vectors

Pt.1: 2D Vectors

1. Given that $p=\mathbf{i}+3 \mathbf{j}$ and $q=4 \mathbf{i}-2 \mathbf{j}$,
a. Find the values of a and b such that $a p+b q=-5 \mathbf{i}+13 \mathbf{j}$,
b. Find the value of c such that $c p+q$ is parallel to the vector \mathbf{j},
c. Find the value of d such that $p+d q$ is parallel to the vector $3 \mathbf{i}-\mathbf{j}$.
2. Given that $p=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right), q=\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)$ and $r=\left(\begin{array}{c}-2 \\ 5 \\ -3\end{array}\right)$, find as column vectors,
a. $p+2 q$
b. $2 p-3 q+r$
3. A car is driving with a velocity of $(7 \mathbf{i}-5 \mathbf{j}) \mathrm{ms}^{-1}$.
a. Find the speed of the car
b. Find the bearing the car is travelling on
4. Given that the point A has position vector $4 \mathbf{i}-5 \mathbf{j}$ and the point B has position vector $-5 \mathbf{i}-2 \mathbf{j}$.
a. Find the vector $\overrightarrow{A B}$
b. Find $|\overrightarrow{A B}|$. Give your answer as a simplified surd.
5. In the diagram, O, is the origin and $\overrightarrow{O A}=6 a, \overrightarrow{O B}=9 b$ and $\overrightarrow{O C}=3 c$.

The point P lies on $A B$ such that $\overrightarrow{A P}=3 b-2 a$.
The point Q lies of $B C$ such that $\overrightarrow{B Q}=2 c-6 b$.

a. Find, in terms of b and c, the position vector of Q. Give your answer in its simplest form.
b. Find $\overrightarrow{A C}$, in terms of a and c, in its simplest form.
c. Explain what your answers in part (b) tell you about $P Q$ and $A C$.
6. The quadrilateral $O A B C$ has $\overrightarrow{O A}=4 \mathbf{i}+2 \mathbf{j}, \overrightarrow{O B}=6 \mathbf{i}-3 \mathbf{j}$ and $\overrightarrow{O C}=8 \mathbf{i}-20 \mathbf{j}$.
a. Find $\overrightarrow{A B}$
b. Show that quadrilateral $O A B C$ is a trapezium.

1 a.

$a(\mathbf{i}+3 \mathbf{j})+b(4 \mathbf{i}-2 \mathbf{j})=-5 \mathbf{i}+13 \mathbf{j}$	$\mathbf{M 1}$
$a+4 b=-5(1)$	Mi
$3 a-2 b=13(2)$	M1
$(1)+2 \times(2) \Rightarrow 7 a=21$	M1
$a=3, b=-2$	

1 b .

$c(\mathbf{i}+3 \mathbf{j})+(4 \mathbf{i}-2 \mathbf{j})=k \mathbf{j}$	M1
$c+4=0$ $c=-4$	M1

1 c .

$(\mathbf{i}+3 \mathbf{j})+d(4 \mathbf{i}-2 \mathbf{j})=k(3 \mathbf{i}-\mathbf{j})$	$\mathbf{M} 1$
$1+4 d=3 k$	M1
$3-2 d=-k(1)+2 \times(2)$	M1
$7=k$	M1
$d=5$	

Ra. $\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)+2\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}9 \\ -1 \\ 1\end{array}\right)$
Db.
$2\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)-3\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)+\left(\begin{array}{c}-2 \\ 5 \\ -3\end{array}\right)=\left(\begin{array}{c}-12 \\ 17 \\ -8\end{array}\right)$
Ba.
Speed $=\sqrt{7^{2}+5^{2}}=\sqrt{74} \mathrm{~ms}^{-1}$
Bb.

$\tan x=\frac{5}{7}$	
$x=\tan ^{-1}\left(\frac{5}{7}\right)$	M1
$x=35.5^{\circ}$	
Bearing $=90+35.5=126^{\circ}$ (to the nearest degree)	M1

4 a .

$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$	$\mathbf{M 1}$
$=-5 \mathbf{i}-2 \mathbf{j})-(2 \mathbf{i}-5 \mathbf{j})$ $\mathbf{M 1}$ $=-9 \mathbf{i}+3 \mathbf{j}$ \mathbf{y}	

4 b .

$\|\overrightarrow{A B}\|=\sqrt{9^{2}+3^{2}}$ $=\sqrt{90}$	M1
$=3 \sqrt{10}$	M1

5 a.

$\overrightarrow{O Q}=\overrightarrow{O B}+\overrightarrow{B Q}$	M1
$9 b+(2 c-6 b)$	Mr
$=3 b+2 c$	M1

5b.

$\overrightarrow{A C}=-\overrightarrow{O A}+\overrightarrow{O C}$	M1
$=3 c-6 a$	M1

5c.

$\overrightarrow{P Q}=\frac{3}{2} \overrightarrow{A C}$	M1
Therefore, $P Q$ and $A C$ are parallel	M1
6 a.	
$\overrightarrow{A B}=-\overrightarrow{O A}+\overrightarrow{O B}$ $=(-4+6) \mathbf{i}+(-2-3) \mathbf{j}$ M1 $=2 \mathbf{i}-5 \mathbf{j}$ $\mathbf{M 1}$ \mathbf{l}	

6 b.

$O C$ is parallel to $A B$ because,	M1
$\overrightarrow{O C}=4 \overrightarrow{A B}$ They are not the same length, hence $O A B C$ is a trapezium.	M1

