Pt.1: 2D Vectors

1. Given that $n = i + 2i$ and $a = 4i = 2i$	
a. Find the values of a and b such that $ap + bq = -5\mathbf{i} + 13\mathbf{j}$,	(3)
b. Find the value of c such that $cp + q$ is parallel to the vector j ,	(2)
c. Find the value of d such that $p + dq$ is parallel to the vector $3\mathbf{i} - \mathbf{j}$.	(3)
2. Given that $p = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$, $q = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$ and $r = \begin{pmatrix} -2 \\ 5 \\ -3 \end{pmatrix}$, find as column vectors, a. $p + 2q$ b. $2p - 3q + r$	(1) (1)

- 3. A car is driving with a velocity of (7i 5j) ms⁻¹.
- a. Find the speed of the car
- b. Find the bearing the car is travelling on
- 4. Given that the point A has position vector $4\mathbf{i} 5\mathbf{j}$ and the point B has position vector $-5\mathbf{i} 2\mathbf{j}$.
- a. Find the vector \overrightarrow{AB}
- b. Find $|\overrightarrow{AB}|$. Give your answer as a simplified surd.

5. In the diagram, O, is the origin and $\overrightarrow{OA} = 6a$, $\overrightarrow{OB} = 9b$ and $\overrightarrow{OC} = 3c$. The point *P* lies on *AB* such that $\overrightarrow{AP} = 3b - 2a$. The point *O* lies of *BC* such that $\overrightarrow{BO} = 2c - 6b$.

a. Find, in terms of b and c, the position vector of Q. Give your answer in its simplest form.	(2)
b. Find \overrightarrow{AC} , in terms of a and c, in its simplest form.	(2)

- b. Find AC, in terms of a and c, in its simplest form.
- c. Explain what your answers in part (b) tell you about PQ and AC.
- 6. The quadrilateral *OABC* has $\overrightarrow{OA} = 4\mathbf{i} + 2\mathbf{j}$, $\overrightarrow{OB} = 6\mathbf{i} 3\mathbf{j}$ and $\overrightarrow{OC} = 8\mathbf{i} 20\mathbf{j}$.
- a. Find \overrightarrow{AB}
- b. Show that quadrilateral OABC is a trapezium.

(2) (2)

(2)

(2)

(2)

(2)

(2)

Mark Scheme

1a.	
a(i + 3j) + b(4i - 2j) = -5i + 13j	M1
a + 4b = -5 (1)	IVII
3a - 2b = 13 (2)	N/T1
$(1) + 2 \times (2) \Rightarrow 7a = 21$	IVII
a = 3, b = -2	M1

1b.

$c(\mathbf{i}+3\mathbf{j})+(4\mathbf{i}-2\mathbf{j})=k\mathbf{j}$	M1
c + 4 = 0 c = -4	M1

1		
н	C	
T	v .	

$(\mathbf{i} + 3\mathbf{j}) + d(4\mathbf{i} - 2\mathbf{j}) = k(3\mathbf{i} - \mathbf{j})$ 1 + 4d = 3k	M1
$3 - 2d = -k (1) + 2 \times (2)$ 7 = k	M1
<i>d</i> = 5	M1

2a. $+2\begin{pmatrix}4\\-2\\1\end{pmatrix}=\begin{pmatrix}9\\-1\\1\end{pmatrix}$ 1 3 **M1**

2h	
20.	

20.	
$2\binom{1}{3}_{-1} - 3\binom{4}{-2}_{1} + \binom{-2}{5}_{-3} = \binom{-12}{17}_{-8}$	M1

3a.

Speed = $\sqrt{7^2 + 5^2} = \sqrt{74} \text{ ms}^{-1}$	M1

3b.

$\tan x = \frac{5}{7}$ $x = \tan^{-1}(\frac{5}{7})$ $x = 35.5^{\circ}$	M1
Bearing = $90 + 35.5 = 126^{\circ}$ (to the nearest degree)	M1
4a.	
$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	M1

AB = OB - OA	MI
= (-5i - 2j) - (2i - 5j) = -9i + 3j	M1

4b.

$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = \sqrt{9^2 + 3^2} \\ = \sqrt{90} \end{vmatrix}$	M1
$=3\sqrt{10}$	M1

5a.

$\overrightarrow{OQ} = \overrightarrow{OB} + \overrightarrow{BQ}$	M1
9b + (2c - 6b)	IVII
=3b+2c	M1
	Maths

5	h
J	υ.

$\overrightarrow{AC} = -\overrightarrow{OA} + \ \overrightarrow{OC}$	M1
=3c-6a	M1

5c.	
$\overrightarrow{PQ} = \frac{3}{2}\overrightarrow{AC}$	M1
Therefore, PQ and AC are parallel	M1
ба.	
$\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}$	M1
$=(-4+6)\mathbf{i}+(-2-3)\mathbf{j}$	
$= 2\mathbf{i} - 5\mathbf{j}$	M1

6b.

OC is parallel to AB because,	M1
$\overrightarrow{OC} = 4\overrightarrow{AB}$ They are not the same length, hence <i>OABC</i> is a trapezium.	M1

