A-Level Unit Test: Jrignonmetry
 Sine and Cosine Rule

1. In the triangle $A B C, A B=11 \mathrm{~cm}, B C=7 \mathrm{~cm}, C A=8 \mathrm{~cm}$.

a. Find the size of angle C, giving your answer in radians to 3 significant figures.
b. Find the area of the triangle $A B C$, giving your answer to 3 significant figures.
2. In the triangle $A B C, A B=16 \mathrm{~cm}, A C=13 \mathrm{~cm}$, angle $A B C=50^{\circ}$ and angle $B C A=x^{\circ}$. Find the two possible values for x, giving your answers to one decimal places.

3. In a triangle $A B C$, the side $A B$ has a length 10 cm , side $A C$ has length 5 cm and angle $B A C=\emptyset$, where \emptyset is measured in degrees. The area of triangle $A B C=15 \mathrm{~cm}^{2}$
a. Find the two possible values of $\cos \emptyset$
b. Given that $B C$ is the longest side of the triangle, find the exact length of $B C$.
4. $A B C D$ is a parallelogram.

$$
\begin{aligned}
& A C=9 \mathrm{~cm} \\
& D C=11 \mathrm{~cm}
\end{aligned}
$$

Angle $D A C=100^{\circ}$

Calculate the area of the parallelogram. Give your answer to 3 significant figures.
5. $A B C$ is an acute angles triangle.
$B A=7 \mathrm{~cm}, B C=8 \mathrm{~cm}$.
The area of the triangle is $18 \mathrm{~cm}^{2}$.
Work out the size of angle $B A C$. Give your answer correct to 3 significant figures. You must show all your working.

6. The area of triangle $A B C$ is $6 \sqrt{2} \mathrm{~m}^{2}$.

Calculate the value of x and give your answer correct to 3 significant figures.

7. $A B C$ is a triangle. D is a point on $A B$. Work out the area of triangle $B C D$. Give your answer correct to 3 significant figures.

Mark Scheme

1a.

$11^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \cos C$	M1
$C=\cos ^{-1}\left(-\frac{8}{112}\right)$	M1
$C=1.64$	M1

1 b.

Area $=\frac{1}{2} h \times 8$	
$h=7 \sin 1.64$	M1
$h=6.98$	
Area $=4 \times 6.98$	M1
Area $=27.9 \mathrm{~cm}^{2}$	

2.

$1=13 \sin x$ and $1=16 \sin 50$	M1
Therefore, $13 \sin x=16 \sin 50$ $x=\sin$$(0.943)$	M1
$x=70.5$	M1
Second answer: $180-70.5$	M1
$x=109.5^{\circ}$	

3a.

Area $=\frac{1}{2} a b \sin C$	
$15=\frac{1}{2}(10)(5) \sin \varnothing$	M1
$\sin \emptyset=\frac{3}{5}$	
Use of $\sin ^{2} \emptyset+\cos ^{2} \emptyset=1$	M1
$\cos ^{2} \emptyset=1-\left(\frac{3}{5}\right)^{2}$	M1
$\cos ^{2} \emptyset=\frac{16}{25}$	M1
$\cos \emptyset= \pm \frac{4}{5}$	M

3 b.

$a^{2}=b^{2}+c^{2}-2 b c \cos \emptyset$	
$B C^{2}=10^{2}+5^{2}-2(10)(5) \cos \emptyset$	M1
$B C^{2}=125-100\left(\pm \frac{4}{5}\right)$	
$B C^{2}=205$ or 45	M1
As it is the longest side, $B C=\sqrt{205}$	M1

4.

$\frac{\sin B}{b}=\frac{\sin A}{a} \rightarrow \frac{\sin B}{9}=\frac{\sin 100}{11}$	
$\sin B=\frac{9 \sin 100}{11}$	M1
$B=\sin ^{-1}\left(\frac{9 \sin 100}{11}\right)$	
$B=53.68 \ldots$	M1
$C=180-100-53.86 \ldots=26.317 \ldots$	M1
Area of triangle $=\frac{1}{2} \times 11 \times 9 \times \sin 26.317 \ldots$	M1
Area of parallelogram $=$ area of triangle $\times 2=43.9 \mathrm{~cm}^{2}$	

5.

Area $=\frac{1}{2} a b \sin c$	
$18=\frac{1}{2} \times 8 \times 7 \sin C$	M1
$C=40.0052 \ldots$	M1
Using the cosine rule:	
$a^{2}=7^{2}+8^{2}-2 \times 7 \times 8 \times \cos 40.0052 \ldots$	M1
$a=5.216$	M1
Area $=18=\frac{1}{2} \times 5.216 \times 7 \times \sin x$	
$\sin x=\frac{18}{0.5 \times 5.216 \times 7}$	M1
$x=80.4^{\circ}$	

6.

$6 \sqrt{2}=\frac{1}{2}(x+3)(2 x-1) \times \sin (45)$	M1
$6 \sqrt{2}=\frac{\sqrt{2}}{2}\left[2 x^{2}-x+6 x-3\right]$	M1
$24=2 x^{2}+5 x-3$	M1
$2 x^{2}+5 x-27=0$	
$x=-\frac{5 \pm \sqrt{241}}{4}$	M1
$x=2.63$ or	
$x=-5.13$	M1
As x must be positive, $x=2.63 \mathrm{~m}$	

7.

$x^{2}=4.9^{2}+3.8^{2}-2 \times 2.9 \times 3.8 \times \cos 80$	M1
$x=5.655$	
$\frac{\sin B}{b}=\frac{\sin A}{a} \rightarrow \frac{\sin B}{4.9}=\frac{\sin 80}{5.655}$	M1
$\sin \emptyset=\frac{4.9 \times \operatorname{sin80}}{5.655}$ $\emptyset=58.57^{\circ}$	M1
$C \widehat{D} B=180-58.57=121.43^{\circ}$	M1
$D \widehat{B} C=180-(121.43+25)=35.57^{\circ}$	M1

