A-Level Unit Test: Seruences and Series
 Binomial Exanasion 1a

1. Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
\left(3-\frac{1}{3} x\right)^{5}
$$

giving each term in its simplest form
2.

Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
\left(1+\frac{3 x}{2}\right)^{8}
$$

giving each term in its simplest form.

3a. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(3+b x)^{5}
$$

where b is a non-zero constant. Give each term in its simplest form.
Given that, in this expansion, the coefficient of x^{2} is twice the coefficient of x,
b. Find the value of b.

4a. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2-9 x)^{4}$, giving each term in its simplest form.

$$
\mathrm{f}(x)=(1+k x)(2-9 x)^{4}, \quad \text { where } k \text { is a constant. }
$$

The expansion, in ascending powers of x, of $\mathrm{f}(x)$ up to and including the term in x^{2} is

$$
A-232 x+B x^{2},
$$

where A and B are constants.
b. Write down the value of A.
c. Find the value of k.
d. Hence find the value of B.

Mark Scheme

1.

$3^{5}+{ }^{5} \mathrm{C}_{1} 3^{4}\left(-\frac{1}{3} x\right)+{ }^{5} \mathrm{C}_{2} 3^{3}\left(-\frac{1}{3} x\right)^{2}+{ }^{5} \mathrm{C}_{3} 3^{2}\left(-\frac{1}{3} x\right)^{3}$	M1
$243-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3}$	M1
$243-135 x+30 x^{2}-\frac{10}{3} x^{3}$	M1

2.

$1+12 x+\frac{8(7)}{2!}\left(\frac{3 x}{2}\right)^{2}+\frac{8(7)(6)}{3!}\left(\frac{3 x}{2}\right)^{3}$	M1
$=1+12 x+63 x^{2}+189 x^{3}$	M1 M1

3a.

$(3+b x)^{5}=3^{5}+{ }^{5} \mathrm{C}_{1} 3^{4}(b x)+{ }^{5} \mathrm{C}_{2} 3^{3}(b x)^{2}+\ldots$	M1 M1
$=243+405 b x+270 b^{2} x^{2}$	M1 M1

3 b .

Coefficients of $x^{2}: 2(405 b)=270 b^{2}$	M1
$b=\frac{810}{270}=3$	M1

4a.

$(2-9 x)^{4}=2^{4}+{ }^{4} \mathrm{C}_{1} 2^{3}(-9 x)+{ }^{4} \mathrm{C}_{2} 2^{2}(-9 x)^{2}+\ldots$	M1 M1
$\mathrm{f}(x)=(1+k x)(2-9 x)^{4}=\mathrm{A}-232 x+\mathrm{B} x^{2}$	M1 M1
$=16-288 x+1944 x^{2}$	

4b.

$A=16$	M1

4c.

$(1+k x)(2-9 x)^{4}=(1+k x)\left(16-288 x+1944 x^{2}\right)$	M1
Coefficient of x terms: $-288 x+16 k x=-232 x$ $16 k=56$ $k=\frac{7}{2}$	M1

4d.

Coefficient of x^{2} terms: $1944 x^{2}-288 k x^{2}$	M1
Therefore $\mathrm{B}=1944-288\left(\frac{7}{2}\right)$	M1
$1944-1008=936$	

