A-Level Unit Test: Sequences and Series Binomial Expansion 1a

1. Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$\left(3-\frac{1}{3}x\right)^5$$

giving each term in its simplest form

2.

Find the first 4 terms, in ascending powers of x, of the binomial expansion of

giving each term in its simplest form.

3a. Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$(3 + bx)^5$$

 $\left(1+\frac{3x}{2}\right)^8$

where b is a non-zero constant. Give each term in its simplest form.

Given that, in this expansion, the coefficient of x^2 is twice the coefficient of x,

b. Find the value of *b*.

4a. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2 - 9x)^4$, giving each term in its simplest form. (4)

 $f(x) = (1 + kx)(2 - 9x)^4$, where k is a constant.

The expansion, in ascending powers of x, of f(x) up to and including the term in x^2 is

$$A-232x+Bx^2,$$

where A and B are constants.

b. Write down the value of A.	(1)
c. Find the value of k.	(2)

d. Hence find the value of *B*.

Total marks: 21

(2)

(2)

(3)

(3)

(4)

Mark Scheme

1.	
$3^{5} + {}^{5}C_{1}3^{4}(\frac{1}{3}x) + {}^{5}C_{2}3^{3}(\frac{1}{3}x)^{2} + {}^{5}C_{3}3^{2}(\frac{1}{3}x)^{3}$	M1
$243 - \frac{405}{3}x + \frac{270}{9}x^2 - \frac{90}{27}x^3$	M 1
$243 - 135x + 30x^2 - \frac{10}{3}x^3$	M1

2.

$1 + 12x + \frac{8(7)}{2!} \left(\frac{3x}{2}\right)^2 + \frac{8(7)(6)}{3!} \left(\frac{3x}{2}\right)^3$	M1
$= 1 + 12x + 63x^2 + 189x^3$	M1 M1

<u>3a.</u>

$(3+bx)^5 = 3^5 + {}^{5}C_1 3^4 (bx) + {}^{5}C_2 3^3 (bx)^2 + \dots$	M1 M1
$= 243 + 405bx + 270b^2x^2$	M1 M1

3b.

Coefficients of x^2 : 2(405 <i>b</i>) = 270 <i>b</i> ²	M1
$b = \frac{810}{270} = 3$	M1

4a.

$(2 - 9x)^4 = 2^4 + {}^{4}C_1 2^3 (-9x) + {}^{4}C_2 2^2 (-9x)^2 + \dots$	M1 M1
$f(x) = (1 + kx)(2 - 9x)^4 = A - 232x + Bx^2$ = 16 - 288x + 1944x ²	M1 M1

4b.	
A = 16	M1

4c.

M1	$(1+kx)(2-9x)^4 = (1+kx)(16-288x+1944x^2)$
	Coefficient of x terms: $-288x + 16kx = -232x$
M1	16k = 56
	$k=\frac{7}{2}$
Ι	$16k = 56$ $k = \frac{7}{2}$

4d.

Coefficient of x^2 terms: $1944x^2 - 288kx^2$	M1
Therefore B = 1944 - $288(\frac{7}{2})$	M1
1944 - 1008 = 936	IVI I

