

1. The number of students doing A Level Maths in a school is summarised in the table below. The Head of Mathematics is going to take a stratified sample of size 20 to survey the students.

	Year 12	Year 13
Male	45	40
Female	35	40

a. State clearly what type of sample he should take and describe the sample.

A factory produces components. Each component has a unique identity number and it is assumed that 2% of the components are faulty. On a particular day, a quality control manager wishes to take a random sample of 50 components.

b. Identify the sampling frame.

The statistic F represents the number of faulty components in the random sample of size 50.

c. Specify the sampling distribution of *F*.

(Total marks: 6)

2. A travel agent sells flights to different destinations from Beerow airport. The distance d, measured in 100 km, of the destination from the airport and the fare $\pounds f$ are recorded for a random sample of 6 destinations.

Destination	A	В	С	D	Ε	F
d	2.2	4.0	6.0	2.5	8.0	5.0
f	18	20	25	23	32	28

Content created by JethwaMaths

(3)

(1)

a. Explain why a linear regression model may be appropriate to describe the relationship between f and d .	(1)
b. Calculate S_{dd} and S_{fd}	(4)
c. Calculate the equation of the regression line of f on d giving your answer in the form $f = a + bd$	(4)
d. Give an interpretation of the value of 2.03.	(1)
Jane is planning her holiday and wishes to fly from Beerow airport to a destination t km away. A rival t agent charges 5p per km.	ravel
e. Find the range of values of t for which the first travel agent is cheaper than the rival.	(2)
(Total marks	s: 12)
3. The heights of adult females are normally distributed with mean 160 cm and standard deviation 8 cm	
a. Find the probability that a randomly selected adult female has a height greater than 170 cm.	(3)
Any adult female whose height is greater than 170 cm is defined as tall.	
b. An adult female is chosen at random. Given that she is tall, find the probability that she has a height greater than 180 cm.	(4)
Half of tall adult females have a height greater than h cm.	(-)
c. Find the value of <i>h</i> .	(5)
(Total marks	s: 12)
4. A bag contains a large number of 10p, 20p and 50p coins in the ratio 1:2:2	
A random sample of 3 coins is taken from the bag.	
Find the sampling distribution of the median of these samples.	
(Total marl	ks: 7)
5. The weight, in grams, of beans in a tin is normally distributed with mean μ and standard deviation 7.8	8
a. Given that 10% of tins contain less than 200 g, find the value of μ .	(3)
b. Find the percentage of tins that contain more than 225 g of beans.	(3)
The machine settings are adjusted so that the weight, in grams, of beans in a tin is normally distributed mean 205 and standard deviation σ .	with

6a. A shopkeeper knows, from past records, that 15% of customers buy an item from the display next to the till.

After a refurbishment of the shop, he takes a random sample of 30 customers and finds that only 1 customer has bought an item from the display next to the till.

Stating your hypotheses clearly, and using a 5% level of significance, test whether or not there has been a change in the proportion of customers buying an item from the display next to the till.

(6)

(4)

b. During the refurbishment a new sandwich display was installed. Before the refurbishment 20% of customers bought sandwiches. The shopkeeper claims that the proportion of customers buying sandwiches has now increased. He selects a random sample of 120 customers and finds that 31 of them have bought sandwiches.

Using a suitable approximation and stating your hypotheses clearly, test the shopkeeper's claim. Use a 10% level of significance.

(7)

(Total marks: 14)

Total Marks for Paper: 60

Mark Scheme

la	Stratified sampli	ng			M1
			Year 12	Year 13	A1
		Male	6	5	AI
		Female	4	5	
1b	List of ID number	ers			B1
1c	Binomial				B1
	$F \sim B(50, 0.02)$				B 1

2a	The points lie reasonably close to a straight line	B1
2b	$\sum d = 27.7$	
	$\Sigma f = 146$	
	$S_{dd} = 152.09 - \frac{27.7^2}{2}$	M1
	⁶	Al
	= 24.2	
	$S_{fd} = 723.1 - \frac{27.7 \times 146}{6} = 49.06$	A1
	= 49.1	
2c	$b = \frac{49.06}{24.208}$	M1
	$b = 2.260 \dots$	A1
	b = 2.03	
	$a = \frac{146}{6} - b \times \frac{27.7}{6}$	M1
	$a = 14.97 \dots$	A1
	f = 15.0 + 2.03d	
2d	A flight costs £2.03 for every extra 100 km	
2e	15.0 + 2.03d < 5d	M1
	$t > 500 \sim 505$	A1

3a	$P(H > 170) = P\left(Z > \frac{170 - 160}{8}\right)$	M1
	1-0.8994	M1
	= 0.1056	A1
3b	$P(H > 180) = P\left(z > \frac{180 - 160}{8}\right)$	M1
	= 0.0062	A1
	$[P(H > 180 \text{ I H} > 170)] = \frac{0.0062}{0.1056}$	M1
	= 0.0587	A1
3c	P(H > h I H > 170) = 0.5	M1
	$P(H > h) = 0.5 \times 0.1056 = 0.0528$	A1
	$\frac{h-160}{1} = 1.62$	M1
	8	B1
	h = 173 cm	A1

P(10) = 0.2, P(20) = 0.4 and P(50) = 0.4	B1: using $P(10) = 0.2$ (p) $P(20) = 0.4(q)$ and $P(50) = 0.4(r)$ may be seen in calculations or implied by a correct probability.	B1
Median 10, 20, 50	B1: three correct medians and no extras.	B1
$P(\text{Median 10}) = 0.2^{3} + 3 \times 0.2^{2} \times 0.4 + 3 \times 0.2^{2} \times 0.4$ or $0.2^{3} + 3 \times 0.2^{2} \times 0.8$	M1: allow if $(p+q+r)=1$ and use $p^3+3 \times p^2 \times q+3 \times p^2 \times r$ or $p^3+3 \times p^2 \times (q+r)$ look for $\frac{1}{125} + \frac{6}{125} + \frac{6}{125}$	
$P(\text{Median 50}) = 0.4^3 + 3 \times 0.4^2 \times 0.2 + 3 \times 0.4^2 \times 0.4$ or $0.4^3 + 3 \times 0.4^2 \times 0.6$	M1: allow if $(p+q+r)=1$ and use $r^{3}+3\times r^{2}\times p+3\times r^{2}\times q$ or $r^{3}+3\times r^{2}\times (p+q)$ Look for $\frac{8}{125}+\frac{12}{125}+\frac{24}{125}$	See below for ho to awa
$P(\text{Median } 20) = 3 \times 0.2 \times 0.4^2 + 6 \times 0.2 \times 0.4 \times 0.4 + 0.4^3 + 3 \times 0.4^2 \times 0.4$	M1: allow if $(p+q+r)=1$ and use $3 \times p \times q^2 + 6 \times p \times q \times r + q^3 + 3 \times q^2 \times r$ $\frac{12}{125} + \frac{24}{125} + \frac{8}{125} + \frac{24}{125}$	
How to award the M marks – Allow the us method marks M1 any correct calculation (implied by corre P(m = 20) or $P(m = 50)M1 any 2 correct calculations (implied by 2 orP(m = 20)$ or $P(m = 50)M1 any 3 correct calculations (implied by 3 or20) and P(m = 50) or3 probabilities that add up to 1 providingprobabilities. Do not allow \frac{1}{5} \frac{2}{5} \frac{2}{5}NB if they do not have a correct answer theiraddition signs$	e of 1, 2 and 5 for the medians for the ct answer) for $P(m = 10)$ or correct answers) $P(m = 10)$ or correct answers) for $P(m = 10)$ and $P(m =$ it is 1 – their 2 other calculated working must be clear including the	
median 10 20 50 0.104 0.544 0.352 0r $\frac{13}{125}$ 0r $\frac{68}{125}$ 0r $\frac{44}{125}$	A1: awrt any 1 correct A2: awrt all 3 correct These do not need to be in a table as long as the correct probablity is with the correct median(10, 20 & 50) NB: Do Not allow the use of 1,2 and 5 for the medians for the A marks	A2

5a	$\frac{200-\mu}{\mu} = -1.2816$	M1
	7.8	B1
	$\mu = 209.996 \dots$	A1
	$\mu = 210$	
5b	$P(X > 225) = P\left(Z > \frac{225 - 210}{7.8}\right)$	M1
	P(Z > 1.92)	A1
	1 - 0.9726	A1
	= 0.0274	
5c	$\frac{210-205}{2} = 2.3263$	M1
	σ	B1
	$\sigma = \frac{5}{23263}$	M1
	$\sigma = 2.15$	A1

6a	$H_0: p = 0.15$	B1
	$H_1: p \neq 0.15$	B1
	$X \sim B(30, 0.15)$	M1
	$P(X \le 1) = 0.0480$	A1
	0.0480 > 0.025	M1
	Not significant therefore do not reject H _o /not in critical region.	
	There is no evidence of a change in the proportion of customers buying an item from	A1
	the display	
6b	$H_0: p = 0.2$	B1
	$H_1: p > 0.2$	
	Let S = the number who buy sandwiches, $S \sim B(120, 0.2)$	M1
	$S \approx W \sim N\left(24, \sqrt{19.2}^2\right)$	A1
	$P(S \ge 31) = P(W \ge 30.5)$	M1
	$=P\left(Z > \frac{30.5 - 24}{\sqrt{19.2}}\right)$	M1
	= P(Z > 1.48)	M1
	= 1 - 0.9306	
	= 0.0694	A1
	Value is smaller than 0.10 so a significant result.	B 1
	There is evidence that more customers are purchasing sandwiches or,	
	The shopkeepers claim is correct.	