A-Level Unit Test PROOF

1. If n is a number between 2 and 5, then $n^3 + n$ is has a factor of 5. True or false? Prove your claim.	(3)
2. Show that $x^2 - 8x + 17 > 0$ for all real values of x.	(3)
3. Prove that there is an infinite amount of prime numbers	(5)
4. Give a counter-example to prove that each of the following statements are false:	
 a) If a² - b² > 0, where a and b are real, then a - b > 0. b) There are no prime numbers divisible by 7. c) If x and y are irrational and x ≠ y, then xy is irrational. d) For all real values of x, cos (90 - x)° = sin x°. 	(3) (1) (2) (2)
 5. Use proof by contradiction to prove each of the following statements. a) If n³ is odd, where n is a positive integer, then n is odd. b) If x is irrational, then x is irrational. c) If a, b and c are integers and bc is not divisible by a, then b is not divisible by a. 	(3) (3) (3)
6. a) Prove that if 2 = p where p and q are integers, then p must be even. b) Use proof by contradiction to prove that 2 is irrational.	(3) (4)
7. Prove that the sum of three consecutive integers is divisible by 3.	(3)

1.

Using proof by exhaustion	M1
$n = 2, (2)^3 + 2 = 10$ (factor of 5)	
$n = 3, (3)^3 + 3 = 30$ (factor of 5)	M2
$n = 4$, $(4)^3 + 4 = 68$ (not factor of 5)	
When $n = 4$, the expression is not a factor of 5 and therefore the claim is false.	A1

2.

$x^{2} - 8x + 17 = (x - 4)^{2} - 16 + 17 = (x - 4)^{2} + 1$	M1
$(x - 4)^2$ will always give a positive value	M2
Therefore, a positive value plus a positive value will always give a value above 0.	A1

3.

Proof by contradiction	M1
Assuming there are a finite number of prime numbers, that we write as:	M2
<i>p</i> ₁ , <i>p</i> ₂ , <i>p</i> ₃ , , <i>p</i> _n	
And we define a new number as:	M3
$m = p_1 x p_2 x p_3 x \dots p_n + 1$	
As we are saying that there are no other primer numbrs than the original list defined, then m	M4
should not be a prime number and therefore divisible by p_n	
However, when we do this, we are left with a remainder of 1, and as there are no integers that	A1
divide by 1, then m must also be a prime number.	
This is a contradiction. Hence, there are infinitely many primer numbers	

4a.	
a = -2, b = 1	M1
$a^2 - b^2 = 4 - 1 = 3$ therefore, $a^2 - b^2 > 0$	M2
a – b = -2 – 1 = -3 therefore, a – b < 0	A1

4b.	
7 is a prime and divisible by 7	M1

4c.	
$x = \sqrt{2}, y = 2\sqrt{2}$ (both irrational)	M1
xy = 4 (rational)	M2

4d.

x = -90	M1
$\cos(90 - x) = \cos 0 = 1$	
sin x = sin (-90) = -1	M2

5a.

Assuming n ³ is odd and n is even,	M1
when n is even, n = 2m	
Therefore, n ³ = (2m) ³ = 8m ³ = 2(4m ³)	M2
2(4m ³) means n ³ is even and therefore is a contradiction and therefore n is odd.	A1

5b.

Assuming x is irrational and \sqrt{x} is rational	M1
$\sqrt{x} = \frac{p}{q}$ $x = \frac{p^2}{q^2}$	
p^2 and q^2 are both rational and therefore x is rational.	M2
This is a contradiction and therefore \sqrt{x} is irrational.	A1

5c.

Assuming that bc is not divisible by a and b and is divisible by a,	M1
If b is divisible by a then b = ka	
bc = kac (which is divisible by a	M2
This is a contradiction and therefore b is not divisible by a.	A1

6a.	
$\sqrt{2} = \frac{p}{2}$	M1
· q	
$2 = \frac{p^2}{q^2}$	N40
$p^2 = 2q^2$	IVIZ
Therefore, p ² is even, therefore p is even.	A1

6b.

Assume $\sqrt{2}$ is rational, $\sqrt{2} = \frac{p}{q}$ and p is even	M1
p = 2n	
$p^2 = 2q^2$	
$(2n)^2 = 2q^2$	
$q^2 = 2n^2$	M2
Therefore q ² is even, and q is even	M3
This is a contradiction and therefore $\sqrt{2}$ is irrational	A1

7.	
Three consecutive integers, n, n + 1, n + 2	M1
Their sum: n + n + 1 + n + 2 = 3n + 3 = 3(n + 1)	M2
As the sum has a factor of 3, the sum of three consecutive integers will is divisible by 3.	A1

Etting Maths

