

1a. Find the value of $16^{-\frac{1}{4}}$	(2)
b. Simplify $x(2x^{-\frac{1}{4}})^4$	(2)
	(Total Marks: 4)
2. Simplify, $\sqrt{32} + \sqrt{18}$	
Giving your answers in the form $a\sqrt{2}$, where <i>a</i> is an integer.	(2)
b. Simplify,	
$\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}}$	
Giving your answer in the form $b\sqrt{2} + c$, where b and c are integers.	(4)
	(Total Marks: 6)
3. The line l_1 has equation $y = -2x + 3$	
The line l_2 is perpendicular to l_1 and passes through the point (5, 6). a. Find an equation for l_2 in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> , and <i>c</i> are integers	(3)
The line l_2 crosses the x-axis at the point A and the y-axis at the point B	
b. Find the <i>x</i> -coordinate of <i>A</i> and the <i>y</i> -coordinate of <i>B</i>	(2)
Given that O is the origin,	
c. Find the area of the triangle <i>OAB</i>	(2)
	(Total Marks: 7)

4. Solve the simultaneous equations,

$$x - 2y - 1 = 0$$

$$x^2 + 4y^2 - 10x + 9 = 0$$

(7)

(Total Marks: 7)

5. Find the first 3 terms in ascending powers of x of

$$(2-\frac{x}{2})^{6}$$

Giving each term in its simplest form

(4)

(Total Marks: 4)

6. Given that a and b are positive constants, solve the simultaneous equations

$$ab = 25$$

 $\log_4 a - \log_4 b = 3$

Show each step of your working, giving exact values for *a* and *b*.

(Total Marks: 6)

(6)

7. The figure shows a sketch of part of the curve with equation y = f(x). The curve crosses the coordinate axes at the points (2.5, 0) and (0, 9), has a stationary point at (1, 11), and has an asymptote y = 3

On separate diagrams, sketch the curve with equation

a.
$$y = 3f(x)$$
 (3)

b.
$$y = f(-x)$$

On each diagram show clearly the coordinates of the points of intersection of the curve with the two coordinate axes, the coordinates of the stationary point, and the equation of the asymptote.

(Total Marks: 6)

(3)

8. The figure shows 3 yachts *A*, *B* and *C* which are assumed to be in the same horizontal plane. Yacht *B* is 500 m due north of yacht *A* and yacht *C* is 700 m from *A*. The bearing of *C* from *A* is 015°

a. Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

The bearing of yacht *C* from yacht *B* is θ° , as shown in the figure

b. Calculate the value of θ .

(4) (Total Marks: 7)

(3)

9. The figure shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is 100 m^3 .

a. Show that the area $A m^2$ of the sheet metal used to make the tank is given by,

	(Total Marks: 12)
d. Calculate the minimum area of sheet metal needed to make the tank	(2)
c. Prove that this value of x gives a minimum value of A .	(2)
b. Use calculus to find the value of x for which A is stationary.	(4)
$A = \frac{300}{x} + 2x^2$	(4)

 $\log_5(4 - x) - 2 \log_5 x = 1$ (6)

Find the value of *x*

11. The points P(-3, 2), Q(9, 10) and R(a, 4) lie on the circle C, as shown in the figure.

Given that *PR* is a diameter of *C*,

- a. Show that a = 13
- b. Find an equation for C.

(5) (Total Marks: 8)

(3)

(Total Marks: 6)

12a. Show that the equation

 $4\sin^2 x + 9\cos x - 6 = 0$ Can be written as, $4\cos^2 x - 9\cos x + 2 = 0$ (2) 12b. Hence solve, for $0 \le x < 720^\circ$, $4\sin^2 x + 9\cos x - 6 = 0$ Giving your answers to 1 decimal place (6)

13. The curve C has equation $y = x^2 - 5x + 4$. It cuts the x-axis at the points L and M as shown in the figure.

c. Find $\int (x^2 - 5x + 4) dx$ The finite region R is bounded by LN, LM and the curve C as shown in the figure. d. Use your answer to part (c) to find the exact value of the area of R. (Total Marks: 10) 14. $f(x) = x^4 + x^3 + 2x^2 + ax + b$ Where *a* and *b* are constants. When f(x) is divided by (x - 1), the remainder is 7.

When f(x) is divided by (x + 2), the remainder is -8

a. Find the coordinates of the point L and the point M

b. Show that the point N(5, 4) lies on C

a. Show that a + b = 3

b. Find the value of a and the value of b (Total Marks: 7) 15. Express $\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$ as a single fraction in its simplest form

(Total Marks: 8)

(2)

(1)

(2)

(5)

(2)

(5)

16. The figure shows a sketch of the graph of y = f(x)

The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point.

Sketch, on separate axes, the graphs of

a. y = f(-x) + 1, b. y = f(x + 2) + 3, c. y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed. (9)

(Total I	Marks: 9)
17a. Sketch for $0 \le x < 360$, the graph of $y = \sin(x + 60)$	(2)
b. Write down the exact coordinates of the points where the graph meets the coordinate axes	(2)
c. Solve for $0 \le x \le 360$, the equation, $\sin(x + 60) = 0.65$	
giving tour answer in degrees to 2 decimal places	(5)
(Total I	Marks: 9)

Total Marks: 120

Mark Scheme

1a	$16^{\frac{1}{4}} = 2$	M1
	$(16^{-\frac{1}{4}}) = \frac{1}{2}$	A1
1b	$(2x^{-\frac{1}{4}})^4 = 2^4 x^{-\frac{4}{4}}$	M1
	$x(2x^{-\frac{1}{4}})^4 = 2^4$	A1

2a	$\sqrt{32} = 4\sqrt{2}$	M1
	$\sqrt{32} + \sqrt{18} = 7\sqrt{2}$	B1
2b	$\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}}$	M1
	$=\frac{7\sqrt{2}(3-\sqrt{2})}{9-2}$	M1
	$3\sqrt{2} - 2$	A1
		A1

3a	Gradient of l_2 is $\frac{1}{2}$	B1
	$y-6=\frac{1}{2}(x-5)$	M1
	x - 2y + 7 = 0	A1
3b	x = 0 0 2 x + 7 = 0	M1
	$\frac{0-2y+7=0}{7}$	
	$y = \frac{1}{2}$	A1
3 c	$\Delta reg OAB = \frac{1}{7} (7) (\frac{7}{7}) = \frac{49}{9} unit^2$	M1
	$r_{10} = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{4} $ unit	A1

4	x = 2y + 1	M1
	$(2y+1)^2 + 4y^2 - 10(2y+1) + 9 = 0$	IVII
	$8y^2 = 16y = 0$	M1
	$\partial y = 1 \partial y = 0$	A1
	8y(y-2) = 0	M1
	y = 0, x = 1	M1
	y = 2 - x = 5	A1
	y - 2, x - 3	A1

5	$(2 - \frac{x}{2})^6 = 2^6 + {\binom{6}{1}} 2^5 (\frac{-x}{2}) + {\binom{6}{2}} 2^4 (\frac{-x}{2})^2$	M1
		B1
	$= 64 - 96x + 60x^2 + \dots$	A1
		A1

6	$\log_4 \frac{a}{b} = 3$	M1
	$\log_4 64 = 3$	B1
	Elimination of one variable	M1
	$a = 40 \text{ or } b = \frac{5}{8}$	A1
	Substitutes to give second variable or solves again from start	M1
	$a = 40 \text{ or } b = \frac{5}{8}$	A1

Bring Maths

7a	y = 9 (1, 33) y = 9 (2.5, 0) x	
	Shape - similar to before but with indication of stretch in <i>y</i> direction by at least one correct from the three traits:	B1
	y intercept, (0, 27) maximum point (1, 33) or asymptote indicated at 9	B1
	Intercept (0,27), max (1,33) and x intercept (2.5,0) all three of these seen	B1
7b	$(-1, 11) \qquad (0, 9) \qquad (0, 9) \qquad (-2.5, 0) O \qquad x$	
	Shape (reflection in y axis)	B1
	(-1,11), (0,9) and (-2.5,0) seen	B 1
	y = 3 (must be equation)	B1

8 a	$BC^2 = 700^2 + 500^2 - 2 \times 500 \times 700 \cos 15$	M1
		A1
	BC = 253	A1
8b	$\frac{\sin B}{700} = \frac{\sin 15}{253}$	M1
	$\sin B = \sin 15 x \frac{700}{253} = 0.716$	M1
	$\theta = 180 - 134.2$	M1
	$\theta = 045.8$	A1

9a	Total area: $3xy + 2x^2$	B1
	Volume: $x^2 y = 100$	
	$y = \frac{100}{x^2}$ $xy = \frac{100}{x}$	B1
	Deriving expression for area in terms of x only	M1
	Area $=\frac{300}{x} + 2x^2$	A1
9b	$\frac{dA}{dx} = \frac{300}{x^2} + 4x$	M1 A1
	$\frac{dA}{dx} = 0$	M1
	$x^3 = 75$ x = 3.2172	A1
9c	$\frac{d^2A}{dx^2} = \frac{600}{x^3} + 4$	M1
	$\frac{d^2A}{dx^2}$ = positive, therefore minimum	Al
9d	Substituting found value of x into (a)	%M1
		" hathe

$y = \frac{100}{4.2172^2} = 5.6228$ Area = 106.707	A1
---	----

10	$2 \log_5 x = \log_5 (x^2) \log_5(4-x) - \log_5(x^2) = \log_5 \left(\frac{4-x}{x^2}\right)$	B1 M1
	$\log \left(\frac{4-x}{x^2}\right) = \log 5 5x^2 + x - 4 = 0$	M1 A1
	(5x-4)(x+1) = 0 (x = -1) $x = \frac{4}{\pi}$	M1 A1

11a	$PQ: m_1 = \frac{10-2}{9-(-3)} = \frac{2}{3}$ $QR: m_2 = \frac{10-4}{9-a}$	M1
	$\frac{m_1m_2 = -1}{\frac{8}{12} \times \frac{6}{9-a}} = -1$	M1
	a = 13	A1
11b	Centre is at (5, 3)	B1
	$(r^2) = (10 - 3)^2 + (9 - 5)^2$	M1 A1
	$(x-5)^2 + (y-2)^2 = 65$	M1 A1

12a	$4(1 - \cos^2 x) + 9\cos x - 6 = 0$	M1
	$4\cos^2 x - 9\cos x + 2 = 0$	A1
12b	$(4\cos x - 1)(\cos x - 2) = 0$	
	$\cos x = 2$ (no solutions)	M1
	$\cos x = \frac{1}{x}$	A1
	$x = 75.7^{\circ}$	B1
	x = 360 - 75.7	М1
	x = 360 + 75.7	MII MI
	x = 720 - 75.5	IVII
	$x = 75.7^{\circ}$	
	$x = 284.5^{\circ}$	A 1
	$x = 435.5^{\circ}$	AI
	$x = 644.5^{\circ}$	

13a	y = 0	M1
	(x-4)(x-1) = 0	IVII
	(1, 0) and $(4, 0)$	A1
13b	x = 5	
	y = 25 - 25 + 4 = 4	B1
	Therefore $(5, 4)$ lies on the curve	
13c	$\int (x^2 - 5x + 4) dx = \frac{1}{2} x^3 - \frac{5}{2} x^2 + 4x (+ a)$	M1
	$J(x - 3x + 4)dx - \frac{1}{3}x - \frac{1}{2}x + 4x(+c)$	A1
13d	Area of triangle = $\frac{1}{2} \times 4 \times 4 = 8$	B1
	Area under curve = $\int_{1}^{5} (x^2 - 5x + 4) dx$	
	$=\frac{1}{(5)^3} - \frac{5}{(5)^2} + 4(5) = -\frac{5}{5}$	M1
	$\frac{3}{2}$ $\frac{2}{5}$ $\frac{2}{6}$ $\frac{1}{6}$ $\frac{1}$	
	$= \frac{-}{3}(4)^{3} - \frac{-}{2}(4)^{2} + 4(4) = -\frac{-}{3}$	Ml
	$= -\frac{5}{2}\frac{8}{2} = \frac{11}{2}$	AI
	6 3 6	Sh.
		191. +
		ngha

	Area of R = $8 - \frac{11}{6} = \frac{37}{6}$	A1
14a	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	М1
	Attempting $f(1)$ or $f(-1)$	IVIII
	f(1) = 1 + 1 + 2 + a + b = 7	A 1
	Therefore, $a + b = 3$	AI
14b	Attempting f(-2)	M1
	f(-2) = 16 - 8 + 8 - 2a + b = -8	A 1
	-2a + b = -24	AI
	Solving both equations $a = \dots b = \dots$	M1
	<i>a</i> = 9	A1
	<i>b</i> = -6	A1

15	<u>x+1 1</u>	<i>x</i> +1	1	M1
	$3x^2-3$ $3x+1$	3(x+1)(x-1)	3 <i>x</i> +1	IVII
	3x+1-3(x-1)			A1
	3(x-1)(3x+1)			M1
	$=\frac{4}{3(x-1)(3x+1)}$			A1

17 a		M1 (Shape) A1 (axes)
17b	(0, 0.5)	B1
	(150, 0)	B1
	(330, 0)	B 1
17c	40.5°	B1
		AI
	$180 - 40.5 = 138.5^{\circ}$	M1
	$40.5 - 30 = 10.5^{\circ}$	M1
	139 - 30 = 109	A1

Q1	Index laws
Q2	Surds
Q3	Equations of lines
Q4	Simultaneous equations
Q5	Binomial expansion
Q6	Simultaneous equations with logarithms
Q7	Sketching and transforming graphs
Q8	Sine and cosine rule
Q9	Maxima and minima problems
Q10	Solving logarithms
Q11	Circles
Q12	Solving trig equations
Q13	Areas of shaded regions
Q14	Factor theorem
Q15	Simplifying algebraic fractions
Q16	Sketching and transforming graphs
017	Sketching and solving trig functions

