1. The line L has equation $y=5-2 x$
a. Show that the point $P(3,-1)$ lies on L
b. Find an equation of the line perpendicular to L, which passes through P. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
2. Write $\sqrt{ } 45$ in the form $a \sqrt{ } 5$, where a is an integer.
b. Express $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})}$ in the form $b+c \sqrt{5}$, where b and c are integers.
3. Given that $\mathrm{f}(x)=\frac{1}{x}, \mathrm{x} \neq 0$
a. Sketch the graph of $y=\mathrm{f}(x)+3$ and state the equations of the asymptotes.
b. Find the coordinates of the point where $y=\mathrm{f}(x)+3$ crosses a coordinate axis.
4. The equation $2 x^{2}-3 x-(k+1)=0$, where k is a constant, has no real roots.

Find the set of possible values of k
5. The curve C has equation $y=\mathrm{f}(x), x>0$, and $\mathrm{f}^{\prime}(x)=4 x-6 \sqrt{x}+\frac{8}{x^{2}}$

Given that the point $P(4,1)$ lies on C,
a. Find $\mathrm{f}(x)$ and simplify your answer.
b. Find an equation of the normal to C at the point $P(4,1)$.
6. $\mathrm{f}(x)=x^{2}+4 k x+(3+11 k)$, where k is a constant.
a. Express $\mathrm{f}(x)$ in the form $(x+p)^{2}+q$, where p and q are constants to be found in terms of k.

Given that the equation $\mathrm{f}(x)=0$ has no real roots
b. Find the set of possible values of k.

Given that $k=1$
c. Sketch the graph of $y=\mathrm{f}(x)$, showing the coordinates of any point at which the graph crosses a coordinate axis.
7. The points A and B have coordinates $(5,-1)$ and $(13,11)$ respectively.
a. Find the coordinates of the mid-point of $A B$.

Given that $A B$ is a diameter of the circle C,
b. Find an equation for C
8. Find, giving your answer to 3 significant figures where appropriate, the value of x for which,
a. $3^{x}=5$
b. $\log _{2}(2 x+1)-\log _{2} x=2$
9. Find all the values of x, to 1 decimal place, in the interval $0^{\circ} \leq x<360^{\circ}$ for which,
$5 \sin (x+30)=3$
b. Find all the values of x , to 1 decimal place, in the interval $0^{\circ} \leq x<360^{\circ}$ for which, $\tan ^{2} x=4$
(Total Marks: 9)
10. The figure shows the shaded region R which is bounded by the curve $y=-2 x^{2}+4 x$ and the line $y=\frac{3}{2}$. The points A and B are the points of intersection of the line and the curve

Find,
a. The x-coordinates of the points A and B
b. The exact area of R.
11. $\mathrm{f}(x)=1-\frac{3}{x+2}+\frac{3}{(x+2)^{2}}, x \neq 2$
a. Show that $\mathrm{f}(x)=\frac{A x^{2}+A x+A}{(x+2)^{2}}, x \neq 2$, where A is an integer to be found.
b. Show that $x^{2}+x+1>0$, for all values of x
c. Show that $\mathrm{f}(x)>0$ for all values of $x, x \neq 2$
12. The figure shows a sketch of part of the curve C with equation,

$$
y=x(x-1)(x-5)
$$

Use calculus to find the total area of the infinite region, shown shaded in the figure, that is between $x=0$ and $x=2$ and is bounded by C, the x-axis and the line $x=2$.

13. A diesel lorry is driven from Birmingham to Bury at a steady speed of v kilometres per hour. The total cost of the journey, $£ C$, is given by

$$
C=\frac{1400}{v}+\frac{2 v}{7}
$$

a. Find the value of v for which C is a minimum
b. Find $\frac{d^{2} C}{d v^{2}}$ and hence verify that C is a minimum for this value of v
c. Calculate the minimum total cost of the journey
14. $\mathrm{f}(x)=x^{4}-x^{3}+3 x^{2}+a x+b$

Where a and b are constants.
When $\mathrm{f}(x)$ is divided by $(x-1)$ the remainder is 4
When $\mathrm{f}(x)$ is divided by $(x+2)$ the remainder is 22 .
Find the value of a and the value of b
15. The radioactive decay of a substance is given by,

$$
R=1000 e^{-c t}, t \geq 0
$$

Where R is the number of atoms at time t years and c is a positive constant
a. Find the number of atoms when the substance started to decay

It takes 5730 years for half of the substance to decay
b. Find the value of c to 3 significant figures.
c. Calculate the number of atoms that will be left when $t=22920$.

16a. Prove that

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x} \equiv \frac{2}{\cos x} \tag{4}
\end{equation*}
$$

b. Hence or otherwise, find for $0<x<360$, all the solutions of,

$$
\begin{equation*}
\frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}=4 \tag{2}
\end{equation*}
$$

Total Marks: 120

Mark Scheme

$\mathbf{1 a}$	$y=5-(2 \times 3)=-1$	B1
$\mathbf{1 b}$	Gradient of $L=\frac{1}{2}$	B1
	$y-(-1)=\frac{1}{2}(x-3)$	M1
	$x-2 y-5=0$	A1

$\mathbf{2 a}$	$3 \sqrt{5}$	B1
$\mathbf{2 b}$	$\frac{2(3+\sqrt{5})}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})}$	M1
	$\frac{2(14+6 \sqrt{5})}{4}$	B1
		M1
	$=7+3 \sqrt{5}$	M1

3a	Shape of $\mathrm{f}(x)$	B1
	Moved up	M1
	Asymptotes $y=3$	B1
	$x=0$	B1
3b	$\frac{1}{x}+3=0$	M1
	$x=-\frac{1}{3}$	A1

4	Use of $b^{2}-4 a c$	M1
	$(-3)^{2}-4 \times 2 \times-(k+1)<0$	A1
	$8 k<-17$	M1
	$k<-\frac{17}{8}$	A1

$\mathbf{5 a}$	$4 x \rightarrow k x^{2}$	M1
	$\mathrm{f}(x)=2 x^{2}-4 x^{\frac{3}{2}}-8 x^{-1}+C$	A1
	At $x=4, y=1$	
	$1=(2 \times 16)-\left(4 \times 4^{\frac{3}{2}}\right)-\left(8 \times 4^{-1}\right)+c$	$\mathbf{A 1}$
	$c=3$	M1
$\mathbf{5 b}$	$\mathrm{f}^{\prime}(4)=16-(6 \times 2)+\frac{8}{16}=\frac{9}{2}$	A1
	Gradient of normal is $-\frac{2}{9}=-\frac{1}{m}$	M1
	Equation of normal: $y-1=-\frac{2}{9}(x-4)$	M1
	$2 x+9 y-17=0$	M1
A1		

$\mathbf{7 a}$	$\left(\frac{5+13}{2}, \frac{-1+11}{2}\right)=(9,5)$	M1
$\mathbf{7 b}$	$r^{2}=(9-5)^{2}+(5--1)^{2}=52$	$\mathbf{A 1}$
	Equation of circle,	M1
	$(x-9)^{2}+(y-5)^{2}=52$	M1

8a	$\log 3^{x}=\log 5$	M1
	$x=\frac{\log 5}{\log 3}$	A1
	$x=1.46$	A1
$\mathbf{8 b}$	$\log _{2}\left(\frac{2 x+1}{x}\right)=2$	M1
	$\frac{2 x+1}{x}=2^{2}$	M1
	$2 x+1=4 x$	M1
	$x=\frac{1}{2}$	A1

9a	$\sin (x+30)=\frac{3}{5}$	B1
	$x+30=36.9$	B1
	$x+30=143.1$	M1
	$\begin{aligned} & x=6.9 \\ & x=113.1 \end{aligned}$	A1
9b	$\tan x= \pm 2$	B1
	$\begin{aligned} & \tan x=2 \\ & x=63.4 \\ & x=243.4 \end{aligned}$	B1 M1
	$\tan x=-2$	-9, ${ }^{1}$

	$x=116.6^{\circ}$
	$x=296.6^{\circ}$

10a	$\frac{3}{2}=-2 x^{2}+4 x$	M1
	$4 x^{2}-8 x+3=0$	A1
	$(2 x-1)(2 x-3)=0$	M1
	$\begin{aligned} & x=\frac{1}{2} \\ & x=\frac{3}{2} \end{aligned}$	A1
10b	Area of $R=\int_{\frac{1}{2}}^{\frac{3}{2}}\left(-2 x^{2}+4 x\right) d x-\frac{3}{2}$	B1
	$\int\left(-2 x^{2}+4 x\right) d x=\left[-\frac{2}{3} x^{2}+2 x^{2}\right]$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
	$\int_{\frac{1}{2}}^{\frac{3}{2}}\left(-2 x^{2}+4 x\right) d x=\left(-\frac{2}{3} \times \frac{3^{3}}{2^{3}}+2 \times \frac{3^{2}}{2^{2}}\right)-\left(-\frac{2}{3} \times \frac{1}{2^{3}}+2 \times \frac{1}{2^{2}}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	$=\frac{11}{6}$ Area of $\mathrm{R}=\frac{11}{6}-\frac{3}{2}=\frac{1}{3}$	A1

11a	$\mathrm{f}(x)=\frac{(x+2)^{2}-3(x+2)+3}{(x+2)^{2}}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$
	$\begin{aligned} & =\frac{x^{2}+4 x+4-3 x-6+3}{(x+2)^{2}} \\ & =\frac{x^{2}+x+1}{(x+2)^{2}} \end{aligned}$ Where $A=1$	A1
11b	$x_{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$
	Any squared value will be positive, therefore, expression is positive.	A1
11c	$\mathrm{f}(x)=\frac{\left(\mathrm{x}+\frac{1}{2}\right) 2+\frac{3}{4}}{(x+2)^{2}}$ Numerator is positive and as $x \neq-2,(x+2)^{2}>0$, therefore denominator is positive. Hence, $\mathrm{f}(x)>0$	B1

12

$y=x\left(x^{2}-6 x+5\right)$	M1
$y=x^{3}-6 x^{2}+5 x$	A1
$\int\left(x^{3}-6 x^{2}+5 x\right) d x=\frac{x^{4}}{4}-\frac{6 x^{3}}{3}+\frac{5 x^{2}}{2}$	M1
$\left[\frac{x^{4}}{4}-\frac{6 x^{3}}{3}+\frac{5 x^{2}}{2}\right]_{0}^{1}=\left(\frac{1}{4}-2+\frac{5}{2}\right)-0=\frac{3}{4}$	A1
$\left[\frac{x^{4}}{4}-\frac{6 x^{3}}{3}+\frac{5 x^{2}}{2}\right]_{1}^{2}=(4-16+10)-\frac{3}{4}=-\frac{11}{4}$	M1
Total area $=\frac{3}{4}+\frac{11}{4}=\frac{7}{2}$	M1
	A1

$\mathbf{1 3 a}$	$\frac{d C}{d v}=-1400 v^{-2}+\frac{2}{7}$	M1 A1
	$-1400 v^{-2}+\frac{2}{7}=0$	M1
	$v^{2}=4900$	M1
	$v=70$	A1
$\mathbf{1 3 b}$	$\frac{d^{2} c}{d v^{2}}=2800 v^{-3}$	M1
	$v=70$, $d^{2} c$ v^{2} 0	A1

	Therefore minimum	
$\mathbf{1 3 c}$	$v=70$ $C=\frac{1400}{70}+\frac{2 \times 70}{7}$	M1
	$C=40$	A1

$14 \quad \mathrm{f}(x)=x^{4}-x^{3}+3 x^{2}+a x+b$
$\mathrm{f}(1)=4$
$\mathrm{f}(2)=22$
$3+a+b=4 \quad$ A1
$16+8+12-2 a+b=22$
Solving simultaneously,
$a=5$
A1

$\mathbf{1 5 a}$	1000	M1
$\mathbf{1 5 b}$	$1000 e^{-5730 c}=500$	M1
	$e^{-5730 c}=\frac{1}{2}$	A1
	$-5730 c=\ln \frac{1}{2}$	M1
	$c=0.000121$	A1
$\mathbf{1 5 c}$	$R=1000 e^{-2290 c}=62.5$	M1
		A1

$16 \mathbf{c \| c \|} \frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}=\frac{\cos ^{2} x+(1+\sin x)^{2}}{(1+\sin x) \cos x}$	M1	
	$\frac{\cos ^{2} x+1+2 \sin x+\sin ^{2} x}{(1+\sin x)(\cos x)}$	A1
	$=\frac{2(1+\sin x)}{(1+\sin x) \cos x}$	M1
	$=\frac{2}{\cos x}$	A1
$\mathbf{1 6 b}$	$\cos x=\frac{1}{2}$	M1
	$x=60^{\circ}, 300^{\circ}$	A1

Q1	Equations of lines
Q2	Simplifying surds
Q3	Reciprocal graph sketching
Q4	Roots
Q5	Integration and normal
Q6	Completing the square and graph sketching
Q7	Circles
Q8	Solving logarithms
Q9	Solving trig. equations
Q10	Area under curves
Q11	Algebraic fractions
Q12	Area of a curve
Q13	Maxima and minima
Q14	Factor theorem
Q15	Exponential modelling
Q16	Trig proof and solving trig

