1a. Evaluate $\left(5 \frac{4}{9}\right)^{-\frac{1}{2}}$
b. Find the value of x such that,

$$
\frac{1+x}{x}=\sqrt{3},
$$

giving your answer in the form $a+b \sqrt{3}$ where a and b are rational.
2. The figure shows part of the curve C with equation $y=\mathrm{f}(x)$ where,

$$
\mathrm{f}(x)=x^{3}-6 x^{2}+5 x
$$

The curve crosses the x-axis at the origin O and at the points A and B.
a. Factorise $\mathrm{f}(x)$ completely
b. Write down the x-coordinates of the points A and B
c. Find the gradient of C at A

The region R is bounded by C and the line $O A$, and the region S is bounded by C and the line $A B$.
d. Use integration to find the area of the combined regions R and S, shown shaded in the figure.
3. Express $\frac{y+3}{(y+1)(y+2)}-\frac{y+1}{(y+2)(y+3)}$ as a single fraction in its simplest form.

4．Given that $2 \sin 2 x=\cos 2 x$
a．Show that $\tan 2 x=0.5$
b．Hence，find the values of x ，to one decimal place，in the interval， $0 \leq x<360$ for which 2 $\sin 2 x=\cos 2 x$ ．

5． $\mathrm{f}(x)=x^{3}-x^{2}-7 x+c$ ，where c is a constant．
Given that $\mathrm{f}(4)=0$
a．Find the value of c
b．Factorise $\mathrm{f}(x)$ as the product of a linear factor and a quadratic factor．
c．Hence show that，apart from $x=4$ ，there are no real values of x for which $\mathrm{f}(x)=0$ ．

6．Find in degrees，the value of x in the interval $0 \leq x \leq 360^{\circ}$ for which，

$$
2 \cos ^{2} x-\cos x-1=\sin ^{2} x
$$

Given your answers to 1 decimal place where appropriate．

7．A rectangular sheet of metal measures 50 cm by 40 cm ．Squares of side $x \mathrm{~cm}$ are cut from each corner of the sheet and the remainder is folded along the dotted lines to make an open tray，as shown in the figure．

a．Show that the volume，$V \mathrm{~cm}^{3}$ ，of the tray is given by

$$
\begin{equation*}
V=4 x\left(x^{2}-45 x+500\right) \tag{3}
\end{equation*}
$$

b．State the range of possible values of x ．
c．Find the value of x for which V is a maximum．
d．Hence find the maximum value of V ．
e．Justify that the value of V you found in part（d）is a maximum

8a. Using the substitution $u=2^{x}$, show that the equation $4^{x}-2^{(x+1)}-15=0$ can be written in the form $u^{2}-2 u-15=0$
b. Hence solve the equation $4^{x}-2^{(x+1)}-15=0$, giving your answers to 2 d.p.
9. A circle has centre $(3,4)$ and radius $3 \sqrt{ } 2$. A straight line l has equation $y=x+3$.
a. Write down an equation of the circle C.
b. Calculate the exact coordinates of the two points where the line l intersects C, giving your answers in surds.
c. Find the distance between these two points.

10a. Write down the first four terms of the binomial expansion, in ascending powers of x , of $(1+3 x)^{n}$, where $n>2$

Given that the coefficient of x^{3} in this expansion is ten times the coefficient of x^{2},
b. Find the value of n
c. Find the coefficient of x^{4} in the expansion.

11a. $\mathrm{f}(x)=5 \sin 3 x, 0 \leq x \leq 180$
a. Sketch the graph of $\mathrm{f}(x)$, indicating the value of x at each point where the graph intersects the x-axis
b. Write down the coordinates of all the maximum and minimum points of $\mathrm{f}(x)$
c. Calculate the values of x for which $\mathrm{f}(x)=2.5$
(Total Marks: 10)
12a. Given that $3+2 \log _{2} x=\log _{2} y$, show that $y=8 x$
b. Hence, or otherwise, find the roots α or β, where $\alpha<\beta$, of the equation,

$$
\begin{equation*}
3+2 \log _{2} x=\log _{2}(14 x-3) \tag{3}
\end{equation*}
$$

c. Show that $\log _{2} \alpha=-2$.
d. Calculate $\log _{2} \beta$, giving your answer to 3 significant figures
(Total Marks: 10)
13. Given that $\mathrm{f}(x)=\left(2 x^{\frac{3}{2}}-3 x^{-\frac{3}{2}}\right)^{2}+5, x>0$
a. Find to 3 significant figures, the value of x for which $\mathrm{f}(x)=5$.
b. Show that $\mathrm{f}(x)$ may be written in the form $A x^{3}+\frac{B}{x^{3}}+C$, where A, B and C are constants to be found.
c. Hence evaluate $\int_{1}^{-2} f(x) d x$
14. For the curve C with equation $y=x^{4}-8 x^{2}+3$,
a. Find $\frac{d y}{d x}$
b. Find the coordinates of each of the stationary points
c. Determine the nature of each stationary point

Mark Scheme

1a	$=\left(\frac{49}{9}\right)^{-\frac{1}{2}}=\sqrt{\frac{9}{49}}=\frac{3}{7}$	M1
$\mathbf{1 b}$	$1+x=\sqrt{3} x$	A1
$1=x(\sqrt{3}-1)$	M1	
	$x=\frac{1}{\sqrt{3}-1}$	A1
	$x=\frac{1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$	
	$=\frac{\sqrt{3}+1}{2-1}$	
	$=\frac{1}{2}+\frac{1}{2} \sqrt{3}$	M1

2 a	$x\left(x^{2}-6 x+5\right)$	M1
	$x(x-1)(x-5)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
2b	1 and 5	B1
2c	$\frac{d y}{d x}=3 x^{2}-12 x+5=-4$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
	$\begin{aligned} & \text { At } x=1, \\ & \frac{d y}{d x}=3-12+5=-4 \end{aligned}$	A1
2d	$\int\left(x^{3}-6 x^{2}+5 x\right) d x=\frac{x^{4}}{2}-\frac{6 x^{3}}{3}+\frac{5 x^{2}}{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\left[\frac{x^{4}}{2}-\frac{6 x^{3}}{3}+\frac{5 x^{2}}{2}\right]_{0}^{1}=\frac{1}{4}-2+\frac{5}{2}=\frac{3}{4}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
	At $5, \frac{625}{4}-250+\frac{125}{2}=-31 \frac{1}{4}$	A1
	To find S : $-31 \frac{1}{4}-\frac{3}{4}=-32$	M1
	Total area $=32+\frac{3}{4}=32 \frac{3}{4}$	A1

3	$\frac{y+3}{(y+1)(y+2)}-\frac{y+1}{(y+2)(y+3)}=\frac{(y+3)^{2}-(y+1)^{2}}{(y+1)(y+2)(y+3)}$	M1
	$=\frac{\left(y^{2}+6 y+9\right)-\left(y^{2}+2 y+1\right)}{(y+1)(y+2)(y+3)}$	M1
$=\frac{4 y+8}{(y+1)(y+2)(y+3)}$	A1	
	$\frac{4(y+2)}{(y+1)(y+2)(y+3)}$	M1
$=\frac{4}{(y+1)(y+3)}$	A1	

4a	$\begin{aligned} & \frac{\sin 2 x}{\cos 2 x}=\tan 2 x \\ & \tan 2 x=0.5 \end{aligned}$	M1
4b	$\begin{aligned} & \tan 2 x=0.5 \\ & 2 x=26.6^{\circ} \\ & \hline \end{aligned}$	B1
	$2 x=206.6$	B1
	$2 x=386.6,566.6$	B1
	$x=13.3,103.3,193.3,283.3$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$

$\mathbf{5 a}$	$64-16-28+c=0$	M1
	$c=-20$	A1
$\mathbf{5 b}$	$(x-4)\left(x^{2}+3 x+5\right)$	B1
		a/3M1

		A1
$\mathbf{5 c}$	For $x^{2}+3 x+5$, $b^{2}-4 a c=-11<0$	M1
	Therefore, no real roots.	A1

6	$2 \cos ^{2} x-\cos x-1=1-\cos ^{2} x$	M1
	$3 \cos ^{2} x-\cos x-2=0$	A1
	$\begin{aligned} & (3 \cos x+2)(\cos x-1)=0 \\ & \cos x=-\frac{2}{3} \\ & \cos x=1 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{aligned} & x=0^{\circ} \\ & x=131.8^{\circ} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { A1 } \end{aligned}$
	$x=(360-131.8)=228.2^{\circ}$	M1

7a	$l=(50-2 x)$ $W=(40-2 x)$	B1
	$V=x(50-2 x)(40-2 x)$	M1
	$V=x\left(2000-80 x-100 x+4 x^{2}\right)$ $=4 x\left(x^{2}-45 x+500\right)$	A1
7b	$0<x<20$	B1
$\mathbf{7 c}$	$\frac{d V}{d x}=12 x^{2}-360 x+2000$	M1
	A1	
	$\frac{d V}{d x}=0$	
	$3 x^{2}-90 x+500=0$	M1
	$x=22.6$	A1
7d	$V_{\max }=4 \times 7.36(7.36)^{2}$ $=6564$	M1
7e	$V^{\prime \prime}=24 x-360$ When $x=6564$ $V^{\prime \prime}=-183$	M1
	$-183<0$, therefore maximum	A1

$\mathbf{8 a}$	$4^{x}=\left(2^{x}\right)^{2}=u^{2}$	M1
	$u^{2}-2 u-15=0$	A1
$\mathbf{8 b}$	$u^{2}-2 u-15=(u-5)(u+3)$	M1
	$u=5$ $2^{x}=5$	A1
	$x=\frac{\log 5}{\log 2}=2.32$	M1

9a	$(x-3)^{2}+(y-4)^{2}=18$	M1 A1
$\mathbf{9 b}$	$y=x+3$ $(x-3)^{2}+(x-1)^{2}=18$	M1
	$2 x^{2}-8 x=8$	A1
	$x=2 \pm \sqrt{8}$	M1
	$y=5 \pm \sqrt{8}$	A1
$\mathbf{9 c}$	Distance $=\sqrt{\left((2 \sqrt{8})^{2}+(2 \sqrt{8})^{2}\right.}$	M1
	$=8$	A1

10a	$1+n(3 x)+\frac{n(n-1)}{2}(3 x)^{2}+\frac{n(n-1)(n-2)}{3!}(3 x)^{3}$	B1 B1
$\mathbf{1 0 b}$	$\frac{n(n-1)(n-2)}{6} \times 27=10 \times \frac{n(n-1)}{2} \times 9$	M1
	$n=12$	A1
$\mathbf{n c}$	$\frac{n(n-1)(n-2)(n-3)}{4!} \times(3 x)^{4}$	M1
	Therefore, when $n=12$, coefficient $=40095$	A1

	Shape	B1
	$60,120,180$ on x-axis	B1
	$5,-5$ on y-axis	B1
$\mathbf{1 1 b}$	$(30,5)$	B1
	$(150,5)$	B1
	$(90,-5)$	B1
$\mathbf{1 1 c}$	$\mathrm{f}(x)=2.5$	
	$\sin 3 x=\frac{1}{2}$	B1
	$3 x=30$	M1
	$3 x=30,160,390,, 510$	M1
	$x=10,50,130,170$	A1

12a	$2 \log x=\log x^{2}$	B1
	$\log _{2}\left(\frac{y}{x^{2}}\right)=3$	M1
	$\frac{y}{x^{2}}=2^{3}$	
$y=8 x^{2}$	A1	
$\mathbf{1 2 b}$	$14 x-3=8 x^{2}$	M1
	$(4 x-1)(2 x-3)=0$	M1
	Roots $=\frac{1}{4}, \frac{3}{2}$	A1
$\mathbf{1 2 c}$	$\log _{2} \alpha=\log _{2} \frac{1}{4}=\log _{2}\left(2^{-2}\right)=-2$	B1
	$\log _{2} 1.5=k$	M1
	$2^{k}=1.5$	M1
	$k=\frac{\log 1.5}{\log 2}=0.585$	A1

13a	$2 x^{\frac{3}{2}}-3 x^{-\frac{3}{2}}=0$	M1
	$\begin{aligned} & x^{3}=\frac{3}{2} \\ & x=1.447 \ldots=1.14 \text { (} 3 \text { s.f }) \end{aligned}$	M1
13b	$\mathrm{f}(x)=4 x^{3}+9 x^{-3}-12+5$	B1
	$=4 x^{3}+\frac{9}{x^{3}}-7$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
13c	$\int_{1}^{2} f(x) d x=\left[x^{4}-\frac{9}{2} x^{-2}-7 x\right]_{1}^{2}$	$\begin{gathered} \text { M1 } \\ \text { A2 } \\ \hline \end{gathered}$
	$=\left(2^{4}-\frac{9}{2} \times 2^{-2}-14\right)-\left(1-\frac{9}{2}-7\right)$	M1
	$=11 \frac{3}{8}$	

$\mathbf{1 4 a}$	$\frac{d y}{d x}=4 x^{3}-16 x$	M1 A1
$\mathbf{1 4 b}$	$4 x^{3}-16 x=0$	M1
	$4 x\left(x^{2}-4\right)=0$	A2
	$x=0,2,-2$	M1
	$y=3,-13,-13$	A1
$\mathbf{1 4 c}$	$\frac{d^{2} y}{d x^{2}}=12 x^{2}-16$	M1
	$x=0$ (maximum)	A1
	$x=2$ (minimum)	A1

Q1	Surds
$\mathbf{Q 2}$	Shaded regions
$\mathbf{Q 3}$	Algebraic fractions
Q4	Solving trig. equations
Q5	Factor theorem
Q6	Solving trig
Q7	Maxima and minima problem
$\mathbf{Q 8}$	Indices laws
$\mathbf{Q 9}$	Equations of straight lines
Q10	Binomial expansion
Q11	Sketching trig functions
Q12	Logarithms
Q13	Integrals
Q14	Stationary points

