1a. By completing the square, find in terms of the constant $k$ the roots of the equation $x^{2}+4 k x-k=0$.
b. Hence find the set of values of $k$ for which the equation has no real roots.

2a. Describe fully a single transformation that maps the graph of $y=\frac{1}{x}$ onto the graph of $y=\frac{3}{x}$.
b. Sketch the graph of $y=\frac{3}{x}$ and write down the equations of any asymptotes.
c. Find the values of the constant c for which the straight line $y=c-3 x$ is a tangent to the curve $y=\frac{3}{x}$

3a. Given that $y=2^{x}$, fin expression in terms of $y$ for,
i. $2^{x+2}$
ii. $2^{3-x}$
b. Show that using the substitution $y=2^{x}$, the equation

$$
2^{x+2}+2^{3-x}=33
$$

can be rewritten as

$$
\begin{equation*}
4 y^{2}-33 y+8=0 \tag{2}
\end{equation*}
$$

c. Hence solve the equation, $2 x+2+23-x=33$
4. The straight line $l_{1}$ has gradient 2 and passes through the point with coordinates $(4,-5)$.
a. Find an equation for $l_{1}$ in the form $y=m x+c$.

The straight line $l_{2}$ is perpendicular to the line with equation $3 x-y=4$ and passes through the point with coordinates $(3,0)$.
b. Find an equation for $l_{2}$.
c. Find the coordinates of the point where $l_{1}$ and $l_{2}$ intersect.
5. The curve $C$ has the equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=(x+2)^{3}
$$

a. Sketch the curve $C$, showing the coordinates of any points of intersection with the coordinate axes.
b. Find $\mathrm{f}^{\prime}(x)$.

The straight line $l$ is the tangent to $C$ at the point $P(-1,1)$.
c. Find an equation for $l$.

The straight line $m$ is parallel to $l$ and is also a tangent to $C$.
d. Show that m has the equation $y=3 x+8$
6. The figure shows the curve $y=2 x^{2}+6 x+7$ and the straight line $y=2 x+13$

a. Find the coordinates of the points where the curve and the line intersect.
b. Find the area of the shaded region bounded by the curve and line
7. The points $A(-3,-2)$ and $B(8,4)$ are at the ends of a diameter of the circle shown in the figure.

a. Find the coordinates of the centre of the circle
b. Find an equation of the diameter $A B$, giving your answer in the form $a x+b y+c=0$, where $a, b$ and c are integers.
c. Find an equation of tangent to the circle at $B$

The line $l$ passes through $A$ and the origin.
d. Find the coordinates of the point at which $l$ intersects the tangent to the circle at $B$, giving your answer as exact fractions
8. The equation $x^{2}+5 k x+2 k=0$, where $k$ is a constant, has real roots
a. Prove that $k(25 k-8) \geq 0$.
b. Hence find the set of possible values of $k$.
c. Write down the values of k for which the equation $x^{2}+5 k x+2 k=0$ has equal roots.

9a. Expand $(2 \sqrt{x}+3)^{2}$
b. Hence evaluate $\int_{1}^{2}(2 \sqrt{x}+3)^{2} d x$, giving your answer in the form $a+b \sqrt{2}$, where $a$ and $b$ are integers. (5)
10. Find all the values of $x$ in the interval $0 \leq x \leq 360$ for which,
a. $\cos (x+75)=0$
b. $\sin 2 x=0.7$, giving your answers to one decimal place.
11. Given that $\log _{2} x=a$, find, in terms of $a$, the simplest form of,
a. $\log _{2}(16 x)$
b. $\log _{2}\left(\frac{x^{4}}{2}\right)$
c. Hence or otherwise, solve,

$$
\begin{equation*}
\log _{2}(16 x)=\log _{2}\left(\frac{x^{4}}{2}\right) \tag{4}
\end{equation*}
$$

giving your answer in its simplest surd form.
12. Express,

$$
\begin{equation*}
\frac{2 x^{3}+x^{2}}{x^{2}-4} \times \frac{x-2}{2 x^{2}-5 x-3} \tag{5}
\end{equation*}
$$

As a single fraction in its simplest form.
13. Given that,

$$
\begin{equation*}
(2+x)^{5}+(2-x)^{5}=A+B x^{2}+C x^{4} \tag{6}
\end{equation*}
$$

Find the values of the constants $A, B$ and $C$
b. Using the substitution $y=x^{2}$ and your answers to part a, solve,

$$
(2+x)^{5}+(2-x)^{5}=349
$$

## Mark Scheme

| 1a | $(x+2 k)^{2}-(2 k)^{2}-k=0$ | M1 |
| :---: | :---: | :---: |
|  | $(x+2 k)^{2}=4 k^{2}+k$ | A1 |
|  | $x+2 k= \pm \sqrt{4 k^{2}+k}$ | M1 |
|  | $x=-2 k \pm \sqrt{4 k^{2}+k}$ | A1 |
| 1b | No real roots if, $4 k^{2}+k<0$ | M1 |
|  | $k(4 k+1)<0$, critical values, $-\frac{1}{4}, 0$ | A1 |
|  |  |  |
|  | $-\frac{1}{4}<k<0$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$ |


| 2a | Stretch by factor of 3 in y -direction about x -axis | B2 |
| :---: | :---: | :---: |
| 2b | Asymptotes: $\mathrm{x}=0$ and $\mathrm{y}=0$ | $\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$ |
| 2 c | $\begin{aligned} & \frac{3}{x}=c-3 x \\ & 3=c x-3 x^{2} \end{aligned}$ | M1 |
|  | $3 x^{2}-c x+3=0$ <br> tangent, therefore equal roots, $b^{2}-4 a c=0$ $(-c)^{2}-(4 \times 3 \times 3)=0$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ |
|  | $\begin{aligned} & c^{2}=36 \\ & c= \pm 6 \end{aligned}$ | A1 |


| 3ai | $2^{x+2}=2^{2} \times 2^{x}=4 y$ | M1 <br> A1 |
| :---: | :--- | :---: |
| 3aii | $2^{3-x}=\frac{2^{3}}{2^{x}}=\frac{8}{y}$ | M1 <br> A1 |
|  | $2^{x+2}+2^{3-x}=33$ <br> $4 y+\frac{8}{y}=33$ <br> $4 y^{2}+8=33 y$ | M1 |
|  | $4 y^{2}-33 y+8=0$ | A1 |
| $\mathbf{3 c}$ | $(4 y-1)(y-8)=0$ | M1 |
|  | $y=\frac{1}{4}$ <br> $y=8$ | A1 |
|  | $x=-2$ <br> $x=3$ | A2 |


| $\mathbf{4 a}$ | $y+5=2(x-4)$ | M1 |
| :---: | :--- | :---: |
|  | $y=2 x-13$ | A1 |
| $\mathbf{4 b}$ | $3 x-y=4$ <br> $y=3 x-4$ | M1 |


|  | Therefore, gradient $=3$ <br> gradient of $l_{2}=-\frac{1}{3}$ |  |
| :---: | :--- | :---: |
|  | $y-0=-\frac{1}{3}(x-3)$ | A1 |
| $\mathbf{4 c}$ | $2 x-13=-\frac{1}{3}+1$ | M1 |
|  | $x=6$ |  |$\quad$ A1 | A1 |
| :--- |


| 5a |  | B3 |
| :---: | :---: | :---: |
| 5b | $\begin{aligned} & \mathrm{f}(x)=(x+2)\left(x^{2}+4 x+4\right) \\ & \mathrm{f}(x)=x^{3}+4 x^{2}+4 x+2 x^{2}+8 x+9 \end{aligned}$ | M1 |
|  | $\mathrm{f}(x)=x^{2}+6 x^{2}+12 x+8$ | A1 |
|  | $\mathrm{f}^{\prime}(x)=3 x^{2}+12 x+12$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$ |
| 5c | gradient $=3-12+12=3$ | B1 |
|  | $\begin{aligned} & y-1=3(x+1) \\ & y=3 x+4 \end{aligned}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$ |
| 5d | $\begin{aligned} & \text { Gradient } m=3 \\ & 3 x^{2}+12 x+12=3 \\ & x^{2}+4 x+3=0 \\ & (x+1)(x+3)=0 \end{aligned}$ | M1 |
|  | $x=-1$ (at $P$ ) and -3 | A1 |
|  | $\begin{aligned} & x=-3, \text { therefore } y=-1 \\ & y+1=3(x+3) \end{aligned}$ | M1 |
|  | $y=3 x+8$ | A1 |


| 6 a | $\begin{aligned} & 2 x^{2}+6 x+7=2 x+13 \\ & x^{2}+3 x-3=0 \end{aligned}$ | M1 |
| :---: | :---: | :---: |
|  | $(x+3)(x-1)=0$ | M1 |
|  | $\begin{aligned} & x=-3 \\ & x=1 \end{aligned}$ | A1 |
|  | Therefore coordinates ( $-3,7$ ), (1, 15) | A1 |
| 6b | $\begin{aligned} & \text { Area under curve }=\int_{-3}^{1}\left(2 x^{2}+6 x+7\right) d x \\ & =\left[\frac{2}{3} x^{3}+3 x^{2}+7 x\right]_{-3}^{1} \end{aligned}$ | $\begin{gathered} \text { M1 } \\ \text { A2 } \end{gathered}$ |
|  | $=\left(\frac{2}{3}+3+7\right)-(-18+27-21)=22 \frac{2}{3}$ | M1 |
|  | Area of trapezium $=\frac{1}{2} \times(7+15) \times 4=44$ | B1 |
|  | $\text { Shaded area }=44-22 \frac{2}{3}=21 \frac{1}{3}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ |


| 7a | Mid point of $A B=\left[\frac{1}{2}(-3+8), \frac{1}{2}(-2+4)\right]=\left(\frac{5}{2}, 1\right)$ | M1 |
| :---: | :--- | :---: |
| $\mathbf{7 b}$ | $\mathbf{M}_{A B}=\frac{4-(-2)}{8-(-3)}=\frac{6}{11}$ | A1 |
|  | Equation of $A B=y-4=\frac{6}{11}(x-8)$ | M1 |
|  | $11 y-44=6 x-48$ <br> $6 x-11 y-4$ | M1 |


| $7 \mathbf{c}$ | Gradient of tangent $=-\frac{11}{6}$ | B1 |
| :---: | :--- | ---: |
|  | Equation: $y-4=-\frac{11}{6}(x-8)$ | M1 |
|  | Equation of $1: y=\frac{2}{3} x$ | A1 |
|  | Substitute into (c): $\frac{2}{3} x-4=-\frac{11}{6} x+\frac{88}{6}$ | B1 |
| $x=7 \frac{7}{15}$ | M1 |  |
| $y=4 \frac{44}{45}$ | A1 |  |
| A1 |  |  |


| 8a | $\begin{aligned} & b^{2}-4 a c \geq 0 \\ & (5 k)^{2}-8 k \geq 0 \\ & k(25 k-8) \geq 0 \end{aligned}$ | M1 A1 |
| :---: | :---: | :---: |
| 8b | $\begin{aligned} & k=0 \\ & k=\frac{8}{25} \\ & \hline \end{aligned}$ | B1 |
|  | $\begin{aligned} & k \leq 0 \\ & k \leq \frac{8}{25} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$ |
| 8c | $\begin{aligned} & k=0 \\ & k=\frac{8}{25} \end{aligned}$ | B1 |


| 9a | $4 x+9+12 \sqrt{x}$ | B1 |
| :---: | :--- | :---: |
| 9b | $\int\left(4 x+12 x^{\frac{1}{2}}+9\right) d x=2 x^{2}+8 x^{\frac{3}{2}}+9 x$ | M1 |
|  | $=\left(8+\left(8 \times 2^{\frac{3}{2}}\right)+18\right)-(2+8+9)$ | A1 |
|  | $=9+16 \sqrt{2}$ | M1 |


| $\mathbf{1 0 a}$ | $x=-15^{\circ}$ <br> $x=345^{\circ}$ | B1 |
| :--- | :--- | :---: |
|  | $x+75=360-60$ | M1 |
|  | $x=225,345$ | A1 |
|  | $2 x=44.4$ | B1 |
|  | $2 x=135.6$ | B1 |
|  | $2 x=495.4$ | B1 |
|  | $x=22.2,67.8,202.2,247.8$ | M1 |
|  |  | A1 |


| 11a | $\log _{2}(16 x)=\log _{2} 16+\log _{2} x$ | M1 |
| :---: | :---: | :---: |
|  | $=4+a$ | A1 |
| 11b | $\log _{2}\left(\frac{x^{4}}{2}\right)=\log _{2} x^{4}-\log _{2} 2$ | M1 |
|  | $=4 \log _{2} x-\log _{2} 2$ | M1 |
|  | $=4 a-1$ | A1 |
| 11c | $\frac{1}{2}=4+a-(4 a-1)$ | M1 |
|  | $a=\frac{3}{2}$ | A1 |
|  | $\begin{aligned} & \log _{2} x=\frac{3}{2} \\ & x=2^{\frac{3}{2}} \end{aligned}$ | M1 |
|  | $\begin{aligned} & x=\sqrt{8} \\ & x=2 \sqrt{2} \end{aligned}$ | A1 |


| 12 | $\frac{x^{2}(2 x+1)}{(x+2)(x-2)} \times \frac{x-2}{(2 x+1)(x-3)}$ | M1 |
| :---: | :--- | :---: |
|  | $=\frac{x^{2}}{(x+2)(x-3)}$ | A2 |


| 13a | Using coefficients $1,5,10,10,5,1$ as necessary | M1 |
| :--- | :--- | :---: |
|  | Using powers $x^{5} 2 x^{4} 2^{2} x^{3}$ | M1 |
|  | Completing the method | M1 |
|  | $A=64$ | B1 |
|  | $B=160$ | A2 |
| $\mathbf{1 3 b}$ | $20 x^{4}+160 x^{2}+64=349$ | M1 |
|  | $4 y^{2}+32 y-57=0$ | A1 |
|  | Solving for $y$ | M1 |
|  | Replacing by $x^{2}$ and completing to obtain all relevant values of $x$ | M1 |
|  | $\pm \sqrt{\frac{3}{2}}$ | A1 |

Q1 $\quad$ Completing the square and roots
Q2 Sketching and transforming graphs
Q3 Index laws
Q4 Straight lines
Q5 Curve sketching, differentiation and tangents
Q6 Simultaneous equations and areas
Q7 Equations of lines
Q8 Real roots
Q9 Integrations
Q10 Solving trig.
Q11 Solving logarithms
Q12 Simplifying algebraic fractions
Q13 Binomial expansion

