
 

 

 

   

 

 

 

 

1a. Express 
18

√3
 in the form k√3  (2) 

 

b. Express (1 - √3)(4 − 2√3) in the form 𝑎 + b√3, where a and b are integers.  (2) 

 

(Total Marks: 4) 

 

2. f(x) = 2x2 – 4x + 1  

 

a. Find the values of constants a, b and c such that, f(x) = a(x + b)2
 + c  (4) 

 

b. State the equation of the line of symmetry of the curve, y = f(x)  (1) 

 

c. Solve the equation f(x) = 3, giving your answers in exact form  (3)  

 

(Total Marks: 8) 

 

3. The curve C with equation y = f(x) is such that, 
𝑑𝑦

𝑑𝑥
= 3𝑥2 + 4x + k 

 

Where k is a constant.  

 

Given that C passes through the points (0, -2) and (2, 18).  

 

a. Show that k = 2 and find an equation for C  (7) 

 

b. Show that the line with equation y = x – 2 is a tangent to C and find the coordinates of the point of  

contact.    (5) 

 

(Total Marks: 12) 

 

4. Solve, for 0 ≤ x < 360, the equation,  

 

3cos2 x + sin2 x + 5 sin x = 0 

    (7) 

 

(Total Marks: 7) 

 

5. A circle has the equation x2 + y2 – 6y – 7 = 0 

 

a. Find the coordinates of the centre of the circle   (2) 

 

b. Find the radius of the circle   (2)  

 

(Total Marks: 4) 
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6. Expand (1 + x)4 in ascending powers of x.   (2) 

 

b. Using your expansion, express each of the following in the form a + b√2, where a and b are integers.  

(i) (1 + √2)4 

 

(ii) (1 - √2)8  (7) 

 

(Total Marks: 9) 

 

7. f(x) = x3 – 4x2 – 3x + 18  

 

a. Show that (x – 3) is a factor of f(x)  (2) 

 

b. Fully factorise f(x)  (4) 

 

c. Using your answer to part b, write down the coordinates of one of the turning points of the curve y = f(x) 

and give a reason for your answer.   (2) 

 

d. Using differentiation, find the x-coordinate of the other turning point of the curve y = f(x) (5) 

 

(Total Marks: 13) 

 

8a. Sketch on the same diagram the graphs of y = sin 2x and y = tan 
𝑥

2
 for x in the interval, 0 ≤ x ≤ 360o (4) 

 

b. Hence state how many solutions exist to the equation,  

 

sin 2x = tan 
𝑥

2
 

 

for x in the interval 0 ≤ x ≤ 360o and give a reason for your answer.  (2) 

 
(Total Marks: 6) 

 

9a. Find the value of a such that,  

loga 27 = 3 + loga 8 

   (3) 

b. Solve the equation  

2x + 3 = 6x – 1 

giving your answer to 3 significant figures.  (4) 

 

(Total Marks: 7) 

 

10. The curve C has the equation,  

y = 3 – 𝑥
1

2 − 2𝑥−
1

2, 𝑥 > 0 

 

a. Find the coordinates of the points where C crosses the x-axis. (4) 

 

b. Find the exact coordinates of the stationary point of C.  (5) 

 

c. Determine the nature of the stationary point (2) 

 

d. Sketch the curve C.   (2) 

 

(Total Marks: 13) 



11. The figure shows triangle PQR in which PQ = 7 and PR = 3√5.

` 

Given that sin (𝑄�̂�𝑅) = 
2

3
 and that 𝑄�̂�𝑅 is acute, 

a. Find the exact value of cos (𝑄�̂�𝑅) in its simplest form. (2) 

(4) b. Show that QR = 2√6

c. Find PQR in degrees to 1 decimal place. (3) 

(Total Marks: 9) 

12. Solve the simultaneous equations,

x – 3y + 7 = 0 

x2 + 2xy – y2 = 7 

(7) 

(Total Marks: 7) 

13. Given that,

𝑑𝑦

𝑑𝑥
=

𝑥3 − 4

𝑥3
, 𝑥 ≠ 0 

a. Find 
𝑑2𝑦

𝑑𝑥2

Given also that y = 0 when x = -1 (3) 

b. Find the value of y when x = 2 (6) 

(Total Marks: 9) 

14. Find the set of values of x for which,

a. 6x – 11 > x + 4 (2) 

b. x2 – 6x – 16 < 0 (3) 

c. Both 6x – 11 > x + 4 and x2 – 6x – 16 > 0 (1) 

(Total Marks: 6) 

15. Evaluate, (36
1

2 + 16
1

4)
1

3 (3) 

b. Solve the equation 3𝑥−
1

2 − 4 = 0 (3) 

(Total Marks: 6) 

Total Marks: 120 



 

Mark Scheme 

 

1a 18

√3
×

√3

√3
  M1 

= 6√3 A1 

1b = 4 - 2√3 - 4√3 + 6 M1 

= 10 - 6√3 A1 

 

2a f(x) = 2[x2 – 2x] + 1 M1 

= 2[(x – 1)2 – 1] + 1 M1 

= 2(x – 1)2 - 1 A2 

2b x = 1 B1 

2c 2(x – 1)2 – 1 = 3 

(x – 1)2 = 2 
M1 

x = 1 ± √2 M1  

A1 

 

3a y = ∫(3𝑥2 + 4𝑥 + 𝑘)𝑑𝑥 

y = x3 + 2x2 + kx + c 

M1 

A2 

At the point (0, -2) 

c = -2  
B1 

At the point (2, 18) 

18 = 8 + 8 + 2k -2 
M1 

k = 2 A1 

y = x3 + 2x2 + 2x - 2 A1 

3b x3 + 2x2 + 2x – 2 = x – 2 

x3 + 2x2 + x = 0 

x(x2 + 2x + 1) = 0 

M1 

x(x + 1)2 = 0 M1 

As there is a repeated root, there is a tangent  A1 

Point of contact is at x = -1 M1 

When x = -1  

y = -3 

Point of contact: (-1, -3)  

A1 

 

 

4 3(1 – sin2 x) + sin2 x + 5sin x = 0 M1 

2sin2 x – 5 sin x – 3 = 0 A1 

(2 sin x + 1)(sin x – 3) =0 M1 

sin x = 3 

No solutions 

sin x = −
1

2
 

A1 

x = 180 + 30, 360 = 30  B1  

M1 

x = 210o, 330o  A1 

 

5a x2 + (y - 3)2 – 9 – 7 = 0 M1 

Therefore centre (0, 3) A1 

5b x2 + (y – 3)2 = 16 M1 

Therefore, radius = 4 A1 

 

6a = 1 + 4x + 6x2 + 4x3 + x4 M1 

 A1 

6bi 1 + 4(√2) + 6(√2)2 + 4(√2)3 + (√2)4 M1 

= 1 + 4√2 + 6(2) + 4(2√2) + 4 M1 



 

= 17 + 12√2 A1 

6bii  (1 - √2 )4 = 17 + 12√2 B1 

(1 - √2 )8 = [(1 - √2)4]2 = (17 - 12√2)2 M1 

= 289 - 408√2 + 288 M1 

= 577 - 408√2 A1 

 

7a f(3) = 27 – 36 – 9 + 18 = 0 

Therefore (x – 3) is a factor 

M1  

A1 

7b  

 

 
` 
 

 

M1  

A1 

f(x) = (x – 3)(x2 – x – 6) 

f(x) = (x – 3)(x + 2)(x – 3) 
M1 

= (x + 2)(x – 3)2 A1 

7c (3, 0) B1 

(x – 3) is a repeated factor of f(x) therefore, x-axis is tangent where x = 3 B1 

7d 
f’(x) = 3x2 – 8x – 3 

M1  

A1 

For stationary point, 3x2 – 8x – 3 = 0 M1 

(3x + 1)(x – 3) = 0 M1 

x = -
1

3
, 3 

Therefore, x = −
1

3
 

A1 

 

8a  

 

 

 

 

 

 

 

B2  

B2 

8b 4 solutions B1 

As the graph intersects at 4 points.  B1 

 

9a loga 27 – loga 8 = 3 

loga 
27

8
 = 3 

M1 

a3 = 
27

8
 

a = √
27

8

3
 

a = 
3

2
 

M1  

A1 

9b (x + 3)log 2 = (x – 1)log 6 M1 

x(log 6 – log 2) = 3 log 2 + log 6 M1 

x = 
3𝑙𝑜𝑔2+𝑙𝑜𝑔6

𝑙𝑜𝑔6−log 2
 

x = 3.52 

M1 

A1 

 

10a 3 – 𝑥
1

2 − 2𝑥−
1

2 = 0 

3𝑥
1

2 − 𝑥 − 2 = 0 
M1 

x - 3𝑥
1

2 + 2 = 0 M1 



 

x = 1 and  4 A1 

Therefore, (1, 0) and (4, 0) A1 

10b 𝑑𝑦

𝑑𝑥
=  −

1

2
𝑥−

1

2 + 𝑥−
3

2   M1 

A1 

For minimum,  

-−
1

2
𝑥−

1

2 + 𝑥−
3

2  = 0 

-
1

2
𝑥−

3

2(x – 2) = 0  

M1 

x = 2 

y = 3 - √2 - 
2

√2
  

A1 

(2, 3 - 2√2) A1 

10c 𝑑2𝑦

𝑑𝑥2 = 
1

4
𝑥−

3

2 −
3

2
𝑥−

5

2 M1 

When x = 2, 
𝑑2𝑦

𝑑𝑥2 = 
1

8√2
 - 

3

8√2
 = -

1

4√2
 

𝑑2𝑦

𝑑𝑥2 < 0, therefore maximum  
A1 

10d  

 

 

 

 

 

B2 

 

11a cos2 P = 1 – (
2

3
)2 = 

5

9
 M1 

As the angle is acute, 𝑄�̂�𝑅 = √
5

9
 = 

1

3
√5 A1 

11b QR2 = 72 + (3√5)2 – (2 x 7 x 3√5 x 
1

3
√5) M1  

A1 

QR2 = 49 + 45 – 70 = 24 M1 

QR = √24 = 2√6 A1 

11c sin 𝑄 

3√5
 = 

2

3

2√6
 M1 

sin Q = 
√5

√6
 M1 

𝑃�̂�𝑅 = 65.9O A1 

 

12 x – 3y + 7 = 0 

x = 3y – 7 
M1 

x2 + 2xy – y2 = 7 

(3y – 7)2 + 2y(3y – 7) – y2 = 8 
M1 

y2 – 4y + 3 = 0 A1 

(y – 1)(y – 3) = 0 M1 

y = 1, y = 3 A1 

When y = 1 

x = -4  
M1 

When y = 3, 

x = 2 
A1 

 

13a 𝑑𝑦

𝑑𝑥
 = 1 – 4x-3 B1 

𝑑2𝑦

𝑑𝑥2 = 12𝑥-4 M1 A1 

13b y = ∫ 1 –  4𝑥-3 dx 

y = x + 2x-2 + c 
M1 A2 

x = -1 M1 



 

y = 0 

Therefore, c = -1  

y = x + 2x-2 – 1 

When x = 2,  

y = 2 + 
1

2
− 1 =

3

2
 

M1 A1  

 

14a 5x > 15 M1 

x > 3 A1 

14b (x + 2)(x – 8) < 0 M1 

 

 

 

 

 

M1 

2 < x < 8 A1 

14c 3 < x < 8 B1 

 

15a 
= (6 + √16

4
)

1

3 

= (6 + 2)
1

3 

B1 

M1 

= √8
3

 

= 2 
A1 

16c 3

√𝑥
 = 4 M1 

√𝑥 = 
3

4
 M1 

x = 
9

16
 A1 
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Q4 Solving trigonometric equations  

Q5 Circle equations 
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