

1. $y = \sqrt{(10x - x^2)}$

a. Copy and complete the table below, giving the values of y to 2 decimal places.

x	1	1.4	1.8	2.2	2.6	3
y	3	3.47			4.39	

b. Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of,

$$\int_{1}^{3} \sqrt{(10x - x^2)} \, dx$$

(4)

(2)

(Total Marks: 6)

2.

The figure shows the shape *ABCDEA* which consists of a right-angled triangle *BCD* joined to a sector *ABDEA* of a circle with radius 7 cm and centre *B*.

A, B and C lie on a straight line with AB = 7 cm.

Given that the size of angle ABD is exactly 2.1 radians,

a. Find, in cm, the length of the arc DEA,

b. Find, in cm, the perimeter of the shape *ABCDEA*, giving your answer to 1 decimal place. (4)

(Total Marks: 6)

(2)

3. Rabbits were introduced onto an island. The number of rabbits, P, t years after they were introduced is modelled by the equation,

$$P=80e^{\frac{1}{5}t}, t\geq 0$$

dt	
d. Find P when $\frac{dP}{dP} = 50$	(3)
c. Find $\frac{dP}{dt}$	(2)
b. Find the number of years it would take for the number of rabbits to first exceed 1000.	(2)
a. Write down the number of rabbits that were introduced to the island	(1)

4. The figure shows part of the curve with equation y = f(x),

The curve passes through the points Q(0, 2) and P(-3, 0) as shown.

a. Find the value of
$$ff(-3)$$
. (2)

On separate diagrams, sketch the curve with equation

b.
$$y = f^{-1}(x)$$
 (2)

c.
$$y = f(|x|) - 2$$
 (2)

d.
$$y = 2f(\frac{1}{2}x)$$
 (3)

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

(Total Marks: 9)

5. The figure shows a sketch of the curve *C* with the equation $y = (2x^2 - 5x + 2)e^{-x}$

a. Find the coordinates of the point where C crosses the y-axis

b. Show that *C* crosses the *x*-axis at x = 2 and find the *x*-coordinate of the other point where *C* crosses the *x*-axis. (3)

c. Find
$$\frac{dy}{dx}$$
 (3)

d. Hence find the exact coordinates of the turning points of C. (5)

(Total Marks: 12)

(1)

6. The functions f and g are defined by,

$$f: x \to 2 |x| + 3$$
$$g: x \to 3 - 4x$$

a. State the range of f.

b. Find *fg*(1).

c. Find g^{-1} , the inverse function of g.

d. Solve the equation,

$$gg(x) + [g(x)]^2 = 0$$
(5)

(Total Marks: 11)

7. The figure shows the design for a triangular garden *ABC* where AB = 7 m, AC = 13 m and BC = 10 m.

В

Given that angle $BAC = \theta$ radians,

a. Show that, to 3 decimal places, $\theta = 0.865$

The point *D* lies on *AC* such that *BD* is an arc of the circle centre *A*, radius 7 m.

The shaded region *S* is bounded by the arc *BD* and the lines *BC* and *DC*. The shaded region *S* will be sown with grass seed, to make a lawned area.

Given that 50 g of grass seed are needed for each square metre of lawn,

b. Find the amount of grass seed needed, giving your answer to the nearest 10 g (7)

8a. Express 2 cos 3x – 3 sin 3x in the form $R \cos (3x + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < 2$ π . Give your answers to 3 significant figures.

 $f(x) = e^{2x} \cos 3x$

b. Show that f'(x) can be written in the form

 $f'(x) = Re^{2x}\cos\left(3x + \alpha\right)$

where *R* and α are the constants found in part (a)

c. Hence, or otherwise, find the smallest positive value of x for which the curve with equation y = f(x) has a turning point. (3)

9.
$$f(x) = \frac{5-8x}{(1+2x)(1-x)^2}$$

a. Express f(x) in partial fractions.

b. Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying

(2)

(3)

(4)

(5)

(5)

Maths

each coefficient.

c. State the set of values of *x* for which your expansion is valid.

(6)

The figure shows the curve with parametric equations

a. Find $\frac{dy}{dx}$ in terms of t	(3)
b. Find, in exact form, the coordinates of the point where the tangent to the curve is parallel to the <i>x</i> -axis.	(3)
c. Show that the region bounded by the curve and the <i>x</i> -axis has area 2	(6)
(Total Marks:	12)

11. The curve *C* has the equation $ye^{-2x} = 2x + y^2$

a. Find the differentiation of the curve in terms of x and y

The point P on C has coordinates (0, 1).

b. Find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (4)

(Total Marks: 9)

(5)

12a. Find $\int (4y+3)^{-\frac{1}{2}} dy$ (2)

b. Given that y = 1.5 at x = -2, solve the differential equation,

$$\frac{dy}{dx} = \frac{\sqrt{4y+3}}{x^2}$$

giving your answer in the form y = f(x)

(T-4-1	N / I	0 \
(1 0tai	магкз:	ð)

(6)

13. Find,

a. $\int xe^x dx$ (2) b. $\int x^2 e^x dx$ (3)

(Total Marks: 5)

Shug Maths

Mark Scheme

1a	2 94 4 14 4 59	B1
	5.84, 4.14, 4.58	B1
1b		B1
	$\frac{1}{2} \times 4 \times (3 + 4.58) + 2(3.47 + 3.84 + 4.14 + 4.39)$	M1
	2	A1
	= 7.852	A1

2a	Length $DEA = 7(2.1) = 14.7$	M1 A1
2b	Angle $CBD = \pi - 2.1$	M1
	$7\cos(\pi - 2.1)$	M1
	$7\sin(\pi - 2.1)$	M1
	$P = 7\cos(\pi - 2.1) + 7\sin(\pi - 2.1) + 7 + 14.7$	A 1
	= 31.2764	AI

3a	$P = 80e^{\frac{t}{5}}$	
	t = 0	B1
	P = 80(1) = 80	
3b	P = 1000	
	$1000 = 80e^{\frac{t}{5}}$	M1
	$\frac{1000}{80} = e^{\frac{t}{5}}$	
	$t = 5 \ln\left(\frac{1000}{80}\right)$	Δ1
	t = 12.6286	
3c	$dP = 16 a^{\frac{t}{2}}$	M1
	$\frac{1}{dt} = 1005$	A1
3d	$50 = 16e^{\frac{t}{5}}$	M1
	$t = 5 \ln(\frac{50}{16}) = 5.69717 \dots$	IVII
	$P = 80e^{\frac{1}{5}(5\ln(\frac{50}{16}))}$	M1
	$P = \frac{80(50)}{16} = 250$	A1

5 a	Either $y = 2$ or (0, 2)	B1
5b	When $x = 2$	B1
	$y = (8 - 10 + 2)e^{-2} = 0$	
	$(2x^2 - 5x + 2) = 0$	M1
	(x-2)(2x-1) = 0	
	$x = 2 \text{ or } x = \frac{1}{2}$	A1
5c		M1
	$\frac{dy}{dx} = (4x - 5)e^{-x} - (2x^2 - 5x + 2)e^{-x}$	A1
		A1
5 d	$(4x-5)e^{-x} - (2x^2 - 5x + 2)e^{-x} = 0$	M1
	$2x^2 - 9x + 7 = 0$	N/T1
	(2x-7)(x-1) = 0	IVII
	$x = \frac{7}{2}, x = 1$	A1
	When $x = \frac{7}{2}$, $y = 9e^{-\frac{7}{2}}$	M1
	When $x = 1$, $y = -e^{-1}$	A1

6a	$f(x) \ge 3$	M1
		AI
6b	An attempt to find $2 3-4x +3$	M1
	x = 1	
	Correct answer $fg(1) = 5$	A1
6c	y = 3 - 4x	
	4x = 3 - y	M1
	$x = \frac{3-y}{4}$	
	4 3-r	
	$g^{-1}(x) = \frac{3-x}{4}$	A1
6d	$[g(x)]^2 = (3 - 4x)^2$	B1
	gg(x) = 3 - 4(3 - 4x)	M1
	$-8 + 16x + 9 - 24x + 16x^2 = 0$	A 1
	$16x^2 - 8x = 0$	AI
	8x(2x-1) = 0	M1
	x = 0	
	x = 0.5	AI

7a	$10^2 = 7^2 + 13^2 - 2 \times 7 \times 13 \cos \theta$	M1
	$\cos\theta = \frac{59}{91}$	A1
	$\theta = 0.8653 \dots = 0.865$	A1
7b	Area triangle $ABC = \frac{1}{2} \times 13 \times 7 \sin 0.865$	M1
	Area of sector $ABD = \frac{1}{2} \times 7^2 \times 0.865$	M1
	= 34.6	A1 د
		This Mathe

Area of $S = \frac{1}{2} \times 13 \times 7 \sin 0.865 - \frac{1}{2} \times 7^2 \times 0.865 = 13.4$	M1 A1
Amount of seed = $13.4 \times 50 = 670g$	M1 A1

8 a	$R^2 = 2^2 + 3^2$	M1
	$R = \sqrt{113}$	A1
	$\tan \alpha = \frac{3}{2}$	M1
	$\alpha = 0.983$	A1
8b		M1
	$f'(x) = 2e^{2x}\cos 3x - 3e^{2x}\sin 3x$	A1
		A1
	$=e^{2x}(2\cos 3x - 3\sin 3x)$	M1
	$=e^{2x}\left(R\cos\left(3x+\alpha\right)\right)$	A1
8c	f'(x) = 0	N/11
	$\cos\left(3x+\alpha\right)=0$	IVII
	$3x + \alpha = \frac{\pi}{2}$	M1
	x = 0.196	A1

9a	5-8x $ A$ $+$ B $+$ C	
	$\frac{1}{(1+2x)(1-x)^2} - \frac{1}{1+2x} + \frac{1}{1-x} + \frac{1}{(1-x)^2}$	M1
	$5 - 8x = A(1 - x)^{2} + B(1 + 2x)(1 - x) + C(1 + 2x)(1 - x)$	
	$r - \frac{1}{r}$	
	$x = \frac{2}{2}$	
	$9 = \frac{9}{4}A$	A1
	A = 4	
	x = 1	
	-3 = 3C	A1
	<i>C</i> = -1	
	Coefficients of x^2	М1
	0 = A - 2B	
	B = 2	AI
b	$f(x) = 4(1+2x)^{-1} + 2(1-x)^{-1} - (1-x)^{-2}$	
	$(1+2x)^{-1} = 1 + (-1)(2x) + \frac{(-1)(-2)}{2}(2x)^2 + \frac{(-1)(-2)(-3)}{3\times 2}(2x)^3 + \cdots$	M1
	$= 1 - 2x + 4x^2 - 8x^3 + \dots$	A1
	$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots$	B1
	$(1-x)^{-2} = 1 + (-2)(-x) + \frac{(-2)(-3)}{2}(-x)^2 + \frac{(-2)(-3)(-4)}{2}(-x)^3 + \cdots$	A 1
	$= 1 + 2x + 3x^2 + 4x^3 + \dots$	AI
	$f(x) = 4(1 - 2x + 4x^2 - 8x^3) + 2(1 + x + x^2 + x^3) - (1 + 2x + 3x^2 + 4x^3)$	M1
	$= 5 - 8x + 15x^2 - 34x^3 \dots$	A1
9c	$ x < \frac{1}{2}$	A1

10a	$\frac{dx}{dt} = 1 + \cos t$ $\frac{dy}{dt} = \cos t$	M1
	$\frac{dy}{dy} = \frac{\cos t}{\cos t}$	M1
	$\frac{dx}{dt} = \frac{1}{1 + \cos t}$	A1
10b	$\frac{\frac{\cos t}{1+\cos t}}{\cos t} = 0$ $t = \frac{\pi}{2}$	M1 A1
10c	$\frac{(\frac{\pi}{2} + 1, 1)}{(\frac{\pi}{2} + 1, 1)} = \int_{2}^{\pi} \sin t \times (1 + \cos t) dt$	A1
L		the low

"> Maths

$=\int_0^{\pi} (\sin t + \frac{1}{2} \sin 2t) dt$	A1
$= [-\cos t - 1.4\cos 2t] \frac{\pi}{0}$	M1
$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	M1
$\left(1-\frac{1}{4}\right)-\left(-1-\frac{1}{4}\right)=2$	A1

11a	$e^{-2x}\frac{dy}{dx} - 2ye^{-2x} = 2 + 2y\frac{dy}{dx}$	M1 A1
	$\frac{d}{dx}(y e^{-2x}) = e^{-2x}\frac{dy}{dx} - 2ye^{-2x}$	B 1
	$(e^{-2x} - 2y)\frac{dy}{dx} = 2 + 2y \ e^{-2x}$	M1
	$\frac{dy}{dx} = \frac{2 + 2y e^{-2x}}{e^{-2x} - 2y}$	A1
11b	At $P, \frac{dy}{dx} = \frac{2+2e^0}{e^0-2} = -4$	M1
	Gradient of normal $=\frac{1}{4}$	M1
	$y-1=\frac{1}{4}(x-0)$	M1
	x - 4y + 4 = 0	A1

12a	$\int (4y+3)^{-\frac{1}{2}} dx = \frac{(4y+3)^{\frac{1}{2}}}{4(\frac{1}{2})} + c$ $= \frac{1}{2}(4y+3)^{\frac{1}{2}} + c$	M1 A1
12b	$\int \frac{1}{\sqrt{4y+3}} dy = \int \frac{1}{x^2} dx$	B1
	$\int (4y+3)^{-\frac{1}{2}} dy = \int x^{-2} dx$	М1
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x} + c$	IVII
	Using (-2, 1.5)	M1
	$\frac{1}{2}(4 \times 1.5 + 3)^{\frac{1}{2}} = -\frac{1}{-2} + c$	
	$\frac{c=1}{1}$	A1
	$\frac{1}{2}(4 \times 1.5 + 3)^{\frac{1}{2}} = -\frac{1}{-2} + 1$	M1
	$(4y+3)^{\frac{1}{2}} = 2 - \frac{2}{x}$	
	$y = \frac{1}{4} \left(2 - \frac{2}{x}\right)^2 - \frac{3}{4}$	A1

13a	$\int x e^x dx = x e^x - \int e^x dx$	M1
	$= xe^x - e^x + c$	A1
13b	$\int x^2 e^x dx = x^2 e^x - \int e^x 2x dx$	M1 A1
	$= x^2 e^x - 2 \int e^x x dx$ = $x^2 e^x - 2(x e^x - e^x) + c$	A1

<u>Topic List</u>

Q1	Trapezium rule
Q2	Radians
Q3	Maxima and minima
Q4	Graph sketching
Q5	Differentiation
Q6	Functions
Q7	Radians
Q8	Trig modelling
Q9	Partial fractions and binomial expansion
Q10	Parametric equations
Q11	Implicit differentiation
Q12	Differential equations
Q13	Integration by parts

