1. $f(x)=2 x^{3}-5 x^{2}+x+2$
a. Show that $(x-2)$ is a factor of $f(x)$
b. Fully factorise, $f(\mathrm{x})$
c. Solve the equation $f(x)=0$

Find the values of θ in the interval $0 \leq \theta \leq 2 \pi$ for which,

$$
\begin{equation*}
2 \sin ^{3} \theta-5 \sin ^{2} \theta+\sin \theta+2=0 \tag{4}
\end{equation*}
$$

giving your answers in terms of π
(Total Marks: 11)
2. The figure shows the curve with equation $y=\sqrt{4 x-1}$

Use the trapezium rule with five equally-spaced ordinates to estimate the area of the shaded region bounded by the curve, the x-axis and the lines $x=1$ and $x=3$.
3. The figure shows part of a design being produced by a computer program.

The program draws a series of circles with each one touching the previous one and such that their centres lie on a horizontal straight line.

The radii of the circles form a geometric sequence with first term 1 mm and second term 1.5 mm . The width of the design is w as shown.
a. Find the radius of the fourth circle to be drawn
b. Show that when eight circles have been drawn, $w=98.5 \mathrm{~mm}$ to 3 significant figures.
c. Find the total area of the design in square centimetres when ten circles have been drawn.
4. Given that $\cos x=\sqrt{3}-1$, find the value of $\cos 2 x$ in the form $a+b \sqrt{3}$, where a and b are integers.
b. Given that,

$$
\begin{equation*}
2 \cos (y+30)^{\circ}=\sqrt{3} \sin (y-30)^{\circ} \tag{5}
\end{equation*}
$$

find the value of $\tan y$ in the form $k \sqrt{3}$ where k is a rational constant
5. $f(x)=\frac{x^{4}+x^{3}-13 x^{2}+26 x-17}{x^{2}-3 x+3}$
a. Find the values of the constants A, B, C and D such that

$$
\begin{equation*}
f(x)=x^{2}+A x+B+\frac{C x+D}{x^{2}-3 x+3} \tag{4}
\end{equation*}
$$

The point P on the curve $y=f(x)$ has x-coordinate 1 .
b. Show that the normal to the curve $y=f(x)$ at P has the equation

$$
\begin{equation*}
x+5 y+9=0 \tag{6}
\end{equation*}
$$

6. $f(x)=5+e^{2 x+3}$
a. State the range of f
b. Find an expression for $f^{-1}(x)$ and state its domain
c. Solve the equation $f(x)=7$
d. Find an equation for the tangent to the curve $y=f(x)$ at the point where $y=7$.
7. The functions f and g are defined by,

$$
\begin{aligned}
& f: x \rightarrow|2 x-5| \\
& g: x \rightarrow \ln (x+3)
\end{aligned}
$$

a. State the range of f
b. Evaluate $f g(-2)$.
c. Solve the equation $f g(x)=3$, giving your answers in exact form.
d. Show that the equation $f(x)=g(x)$ has a root, α, in the interval $[3,4]$.
e. Use the iteration formula,

$$
x_{n+1}=\frac{1}{2}\left[5+\ln \left(x_{n}+3\right)\right]
$$

with $x_{0}=3$, to find x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 significant figures
f. Show that your answer for x_{4} is the value of α correct to 4 significant figures
8. Prove the identity $2 \cot 2 x+\tan x \equiv \cot x$,

$$
\begin{equation*}
x \neq \frac{n}{2} \pi \pi, \mathrm{n} \in \mathrm{Z} \tag{5}
\end{equation*}
$$

8 b. Solve, for $0 \leq x<\pi$, the equation $2 \cot 2 x+\tan x=\operatorname{cosec}^{2} x-7$,
giving your answers to 2 decimal places
9. A curve has the equation

$$
\begin{equation*}
x^{3}+2 x y-y^{2}+24=0 \tag{8}
\end{equation*}
$$

Show that the normal to the curve at the point $(2,-4)$ has the equation $y=3 x-10$.
(Total Marks: 8)
10a. Expand $(4-x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^{2}, simplifying each coefficient.
b. State the set of values of x for which your expansion is valid
c. Use your expansion with $x=0.01$ to find the value of $\sqrt{399}$, giving your answer to 9 significant figures.

11a. Use the substitution $x=2 \sin u$ to evaluate,

$$
\begin{equation*}
\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x \tag{5}
\end{equation*}
$$

b. Use integration by parts to evaluate,

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} x \cos x d x \tag{6}
\end{equation*}
$$

(Total Marks: 11)
12a. Sketch on the same diagram the graphs of $y=|x|-a$ and $y=|3 x+5 a|$, where a is a positive constant.
Show on your diagram the coordinates of any points where each graph meets the coordinate axes
b. Solve the equation, $|x|-a=|3 x+5 a|$

Mark Scheme

1a	$f(2)=16-20+2+2=0 \therefore(x-2)$ is a factor	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
1b	$\begin{array}{r} 2 x^{2}-x-1 \\ x - 2 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } + x + 2 } \\ \frac{2 x^{3}-4 x^{2}}{-x^{2}}+x \\ -x^{2}+2 x \\ -x+2 \\ -x+2 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$f(x)=(x-2)\left(2 x^{2}-x-1\right)=(x-2)(2 x+1)(x-1)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
1c	$x=-\frac{1}{2}, 1,2$	B1
1d	$\begin{aligned} & \sin \theta=2, \text { (no solutions) } \\ & \sin \theta=-\frac{1}{2^{\prime}} \\ & \sin \theta=1 \end{aligned}$	M1
	$\theta=\pi+\frac{\pi}{6}, 2 \pi-\frac{\pi}{6} \text { or } \frac{\pi}{2}$	$\begin{gathered} \hline \text { M1 } \\ \text { B1 } \\ \hline \end{gathered}$
	$\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$	A1

$\mathbf{2}$							
	\mathbf{x}	$\mathbf{1}$	$\mathbf{1 . 5}$	$\mathbf{2}$	$\mathbf{2 . 5}$	$\mathbf{3}$	
	$\sqrt{\mathbf{4 x - 1}}$	$\sqrt{3}$	$\sqrt{5}$	$\sqrt{7}$	3	$\sqrt{11}$	M1
	area $=\frac{1}{2} \times 0.5 \times[\sqrt{3}+\sqrt{11}+2(\sqrt{5}+\sqrt{7}+3)$	B1					
	$=5.20(3$ s.f $)$	M1					

3a	$\begin{aligned} & r=15 \\ & u_{4}=1 \times(1.5)^{3}=3.375 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
3b	$\begin{aligned} & w=2 \times S_{8} \\ & G P: a=1, r=1.5 \end{aligned}$	M1
	$=2 \times \frac{1\left[(1.5)^{8}-1\right]}{1.5-1}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$
	$=98.516=98.5 \mathrm{~mm}$	A1
3 c	Areas form $G P, a=\pi \times 1^{2}=\pi$ $r=(1.5)^{2}=2.25$	B2
	$\text { Total area }=\frac{\pi\left[(2.25)^{10}-1\right]}{2.25-1}=8354.8 \mathrm{~mm}^{2}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{aligned} & =\frac{8354.8}{10^{2}} \\ & =83.5 \mathrm{~cm}^{2}(3 \text { s.f }) \end{aligned}$	A1

4a	$\cos ^{2} x=(\sqrt{3}-1)^{2}=3-2 \sqrt{3}+1=4-2 \sqrt{3}$	M1
	$\cos 2 x=2 \cos ^{2} x-1=2(4-2 \sqrt{3})-1=7-4 \sqrt{3}$	M1
$\mathbf{4 b}$	$2(\cos y \cos 30-\sin y \sin 30)=\sqrt{3}(\sin y \cos 30-\cos y \sin 30)$	A1
	$\sqrt{3} \cos y-\sin y=\frac{3}{2} \sin y-\frac{1}{2} \sqrt{3} \cos y$	M1
	$\frac{3}{2} \sqrt{3} \cos y=\frac{5}{2} \sin y$ $\tan y=\frac{3}{2} \sqrt{3} \div \frac{5}{2}=\frac{3}{5} \sqrt{3}$	B1

5a	$\begin{aligned} \hline x^{2}-3 x+3 & \begin{array}{l} x^{2}+4 x-4 \\ x^{4}+x^{3}-13 x^{2}+26 x-17 \\ x^{4}-3 x^{3}+3 x^{2} \\ 4 x^{3}-16 x^{2} \end{array}+26 x \\ & \frac{x^{3}-12 x^{2}+12 x}{-4 x^{2}+14 x-17} \\ & \frac{-4 x^{2}+12 x-12}{2 x-5} \end{aligned}$	M1
	$\begin{aligned} & f(x)=x^{2}+4 x-4+\frac{2 x+5}{x^{2}-3 x+3} \\ & A=4, B=-4, C=2, D=-5 \end{aligned}$	A3
5b	$f^{\prime}(x)=2 x+4+\frac{2 \times\left(x^{2}-3 x+3\right)-(2 x-5) \times(2 x-3)}{\left(x^{2}-2 x+3\right)^{2}}$	$\begin{gathered} \text { M1 } \\ \text { A2 } \end{gathered}$
	$\begin{aligned} & x=1, y=-2, \text { gradient }=5 \\ & \text { Gradient of normal }=-\frac{1}{5} \end{aligned}$	M1
	$y+2=-\frac{1}{5}(x-1)$	M1
	$\begin{aligned} & 5 y+10=-x+1 \\ & x+5 y+9=0 \end{aligned}$	A1

6a	$f(x)>5$	B1
6b	$\begin{aligned} & y=5+e^{2 x-3} \\ & 2 x-3=\ln (y-5) \end{aligned}$	M1
	$x=\frac{1}{2}[3+\ln (y-5)]$	M1
	$f^{-1}(x)=\frac{1}{2}[3+\ln (\mathrm{x}-5)], x \in \mathrm{R}, x>5$	A2
6 c	$x=f^{1}(7)=\frac{1}{2}(3+\ln 2)$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$
6d	$f^{\prime}(x)=2 e^{2 x-3}$	M1
	Gradient $=4$	A1
	$y-7=4\left[x-\frac{1}{2}(3+\ln 2)\right]$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$

7a	$f(x) \geq 0$	B1
7b	$=f(0)=5$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$
7c	$f g(x)=f[\ln (x+3)]=\|2 \ln (x+3)-5\|$	M1
	$\begin{aligned} & \|2 \ln (x+3)-5\|=3 \\ & 2 \ln (x+3)=2,8 \end{aligned}$	M1
	$\ln (x+3)=1,4$	A1
	$x=e-3, e^{4}-3$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
7d	$\begin{aligned} & \text { let } h(x)=f(x)-g(x) h(3) \\ & =-0.79, f(4)=1.1 \end{aligned}$	M1
	sign change, $h(x)$ continuous \therefore root	A1
7e	$x_{1}=3.396, x_{2}=3.428, x_{3}=3.430, x_{4}=3.431$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A2 } \\ & \hline \end{aligned}$
7f	$h(3.4305)=-0.000052, \mathrm{f}(3.4315)=0.0018$	M1
	sign change, $h(x)$ continuous \therefore root $\therefore \alpha=x_{4}$ to 4sf	A1

8a	LHS $=\frac{2 \cos 2 x}{\sin 2 x}+\frac{\sin x}{\cos x}$	M1
	$=\frac{\cos 2 x}{\sin x \cos x}+\frac{\sin x}{\cos x}$	M1
$=\frac{\cos 2 x+\sin ^{2} x}{\sin x \cos x}$	A1	
	$=\frac{\left(\cos ^{2} x-\sin ^{2} x\right)+\sin ^{2} x}{\sin ^{2} x \cos x}$	M1
	$=\frac{\cos ^{2} x}{\sin x \cos x}$	A1

	$=\frac{\cos x}{\sin x}$ $=\cot x$	
$\mathbf{8 b}$	$\cot x=\operatorname{cosec}^{2} x-7$ $\cot x=1+\cot ^{2} x-7$	M1
$\cot ^{2} x-\cot x-6=0$ $(\cot x+2)(\cot x-3)=0$	M1	
$\cot x=-2$ $\cot x=3$	A1	
$\tan x=-\frac{1}{2}$ $\tan x=\frac{1}{3}$	M1	
$x=\pi-0.4636$ or 0.32 $x=0.32,2.68$	A2	

9	$3 x^{2}+2 y+2 x \frac{d y}{d x}-2 y \frac{d y}{d x}=0$	M1
	$(2,-4) \Rightarrow 12-8+4 \frac{d y}{d x}+8 \frac{d y}{d x}=0$	A2
$\frac{d y}{d x}=-\frac{1}{3}$	M1	
Gradient of normal $=3$	A1	
$y+4=3(x-2)$	M1	
$y=3 x-10$	M1	

10a	$4^{\frac{1}{2}}\left(1-\frac{1}{4} x\right)^{\frac{1}{2}}=2\left(1-\frac{1}{4} x\right)^{\frac{1}{2}}$	B1		
	$=2\left[1+\frac{1}{2}\left(-\frac{1}{4} x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2}\left(-\frac{1}{4} x\right)^{2}+\cdots\right]$ $=2-\frac{1}{4} x-\frac{1}{64} x^{2}$	M1 A2		
$\mathbf{1 0 b}$	$\|x\|<4$	B1		
$\mathbf{1 0 c}$	$\mathrm{x}=0.01$			
	$(4-\mathrm{x})^{\frac{1}{2}}=\sqrt{3.99}=\sqrt{\frac{399}{100}}=\frac{1}{10} \sqrt{399}$	M1		
$\mathrm{x}=0.01$ $(4-\mathrm{x})^{\frac{1}{2}}=2-\frac{1}{400}-\frac{1}{640000}=1.997498438$	M1			
	$\sqrt{399}=10 \times 1.997498438=19.974 \ldots$			M1
:---:				

11a	$\begin{aligned} & x=2 \sin u \\ & \frac{d x}{d u}=2 \cos u \end{aligned}$	M1
	$\begin{aligned} & x=0, u=0 \\ & x=\sqrt{3}, u=\frac{\pi}{3} \end{aligned}$	B1
	$I=\int_{0}^{\frac{\pi}{3}} \frac{1}{2 \cos u} \times 2 \cos u d u=\int_{0}^{\frac{\pi}{3}} 1 d u$	A1
	$[u]_{0}^{\frac{\pi}{3}}=\frac{\pi}{3}-0=\frac{\pi}{3}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
11b	$\begin{aligned} & u=x \\ & u^{\prime}=1 \\ & v^{\prime}=\cos x \\ & v=\sin x \\ & \hline \end{aligned}$	M1
	$I=[x \sin x]_{0}^{\frac{\pi}{2}}-\int \sin x d x$	A2
	$=[x \sin x+\cos x]_{0}^{\frac{\pi}{2}}$	${ }_{\text {a/k }}^{1}$

$=\left(\frac{\pi}{2}+0\right)-(0+1)=\frac{\pi}{2}-1$

12a		$\begin{aligned} & \text { B3 } \\ & \text { B3 } \end{aligned}$
12b	$\begin{aligned} & x-a=3 x+5 a \\ & x=-\frac{3}{2} a \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{aligned} & -x-a=-(3 x+5 a) \\ & x=-2 a \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{aligned} & x=-2 a \\ & y=-\frac{3}{2} a \end{aligned}$	A1

Q1	Factor theorem, trig
$\mathbf{Q 2}$	Trapezium rule
$\mathbf{Q 3}$	Geometric series
$\mathbf{Q 4}$	Trigonometry
$\mathbf{Q 5}$	Differentiation
Q6	Functions
$\mathbf{Q 7}$	Functions, exponentials and logs, numerical methods
$\mathbf{Q 8}$	Proving trig and solving trig. equations
$\mathbf{Q 9}$	Implicit differentiation
Q10	Binomial expansion
Q11	Integration by substitution and integration by parts
$\mathbf{Q 1 2}$	Sketching and solving modulus functions

