

Practice Exam Paper B Time: 2 Hours

1a. Prove, by counter-example, that the statement "cosec $\theta - \sin \theta > 0$ for all v $0 < \theta < \pi$ " is false.	alues of θ in the interval (2)
b. Find the values of θ in the interval $0 < \theta < \pi$ such that cosec $\theta - \sin \theta = 2$, gidecimal places.	ving your answers to 2 (5)
	(Total Marks: 7)
2. Solve each equation, giving your answers in exact form.	
a. $\ln(2x - 3) = 1$	(3)
b. $3e^{y} + 5e^{-y} = 16$	(5)
	(Total Marks: 8)
3. A student completes a mathematics course and begins to work through past the first paper in 2 hours and the second in 1 hour 54 minutes.	
	exam papers. He completes
the first paper in 2 hours and the second in 1 hour 54 minutes.	exam papers. He completes
the first paper in 2 hours and the second in 1 hour 54 minutes. Assuming that the times he takes to complete successive papers form a geomet	exam papers. He completes ric sequence, (3)
the first paper in 2 hours and the second in 1 hour 54 minutes. Assuming that the times he takes to complete successive papers form a geomet a. Find, to the nearest minute, how long he will take to complete the fifth paper	exam papers. He completes ric sequence, (3) imately 13 hours 28 minutes (3)

Show that

$$3\sin^2 x + 8\sin x - 3 = 0 \tag{3}$$

b. Find, to 2 decimal places, the values of x in the interval $0 \le x \le 2\pi$ such that

$$8\tan x - 3\cos x = 0\tag{5}$$

(Total Marks: 8)

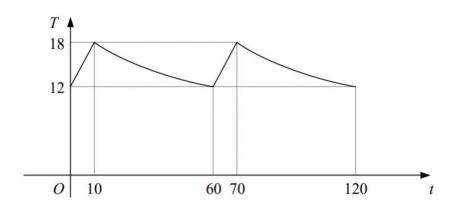
5. The function f is defined by,

$$f(x) = 3 - x^2, x \ge 0$$

a. State the range of \boldsymbol{f}

(1)

(3)


b. Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same diagram

c. Find an expression for $f^{-1}(x)$ and state its domain

The function g is defined by, $g(x) \equiv \frac{8}{3-x}, x \neq 3$

- d. Evaluate fg(-3).
- e. Solve the equation $f^{-1}(x) = g(x)$. (3)

6. The figure shows a graph of the temperature of a room, $T^{\circ}C$, at time t minutes.

The temperature is controlled by a thermostat such that when the temperature falls to 12° C, a heater is turned on until the temperature reaches 18° C. The room then cools until the temperature again falls to 12° C.

For t in the interval $10 \le t \le 60$, *T* is given by,

$$T = 5 + Ae^{-kt}$$

Where *A* and *k* are constants.

Given that T = 18 when t = 10 and that T = 12 when t = 60,

a. Show that k = 0.0124 to 3 significant figures and find the value of A (6)

b. Find the rate at which the temperature of the room is decreasing when t = 20 (4)

The temperature again reaches 18°C when t = 70 and the graph for $70 \le t \le 120$ is a translation of the graph for $10 \le t \le 60$

c. Find the value of the constant *B* such that for $70 \le t \le 120$

$$T = 5 + Be^{-kt} \tag{3}$$

(4)

(2)

(Total Marks: 13)

7. A curve has the equation $y = x^2 - \sqrt{4 + \ln x}$

a. Show that the tangent to the curve at the point where x = 1 has the equation 7x - 4y = 11 (5)

The curve has a stationary point with *x*-coordinate α .

b. Show that $0.3 < \alpha < 0.4$

c. Show that α is a solution of the equation,

$$x = \frac{1}{2} \left(4 + \ln x\right)^{-\frac{1}{4}} \tag{2}$$

d. Use the iteration formula,

$$x_{n+1} = \frac{1}{2} \left(4 + \ln x_n \right)^{-\frac{1}{4}}$$

 $x_0 = 0.35$ to find x_1 , x_2 , x_3 and x_4 , giving your answers to 5 decimal places.

8. Find the binomial expansion of $(2 - 3x)^{-3}$ in ascending powers of x up to and including the term in x^3 ,	
simplifying each coefficient.	(5)

b. State the set of values of x for which your expansion is valid

9. A curve has the equation

 $x^2 + 3xy - 2y^2 + 17 = 0.$

a. Find an expression for $\frac{dy}{dx}$ in terms of x and y (5)

b. Find an equation for the normal to the curve at the point (3, -2).

(Total Marks: 8)

10a. Find the values of the constants A, B, C and D such that,

$$\frac{2x^3 - 5x^2 + 6}{x^2 - 3x} \equiv Ax + B + \frac{C}{x} + \frac{D}{x - 3}$$
(5)

b. Evaluate,

$$\int_{1}^{2} \frac{2x^3 - 5x^2 + 6}{x^2 - 3x} \, dx$$

Giving your answer in the form $p + q \ln 2$, where p and q are integers.

(5)

(3)

(1)

(3)

(Total Marks: 14)

(Total Marks: 6)

(Total Marks: 10)

11. A mathematician is selling goods at a car boot sale. She believes that the rate at which she makes sales depends on the length of time since the start of the sale, t hours, and the total value of sales she has made up to that time, $\pounds x$. She uses the model

$$\frac{dx}{dt} = \frac{k(5-t)}{x}$$

Where k is a constant.

Given that after two hours she has made sales of £96 in total,

a. Solve the differential equation and show that she made £72 in the first hour of the sale.

The mathematician believes that is it not worth staying at the sale once she is making sales at a rate of less than $\pounds 10$ per hour.

b. Verify that at 3 hours and 5 minutes after the start of the sale, she should have already left. (4)

(Total Marks: 12)

12. A curve has parametric equations

$$x = 3\cos^2 t, y = \sin 2t \qquad 0 \le t < \pi$$

a. Show that
$$\frac{dy}{dx} = -\frac{2}{3}\cot 2t$$
 (4)

b. Find the coordinates of the points where the tangent to the curve is parallel to the *x*-axis. (3)

c. Find the cartesian equations of the curve in the form $y^2 = f(x)$

(Total Marks: 11)

(4)

Total Marks: 120

Mark Scheme

1 a	If $\theta = \frac{\pi}{2}$, sin $\theta = 1$ cosec $\theta = 1$	M1
	$\csc \theta - \sin \theta = 1 - 1 = 0$ Therefore, statement is false.	A1
1b	$1 - \sin^2 \theta = 2 \sin \theta$	M1
	$\sin^2\theta + 2\sin\theta - 1 = 0$	141
	$\sin \theta = -1 - \sqrt{2}$ or	M1 A1
	$\sin\theta = -1 + \sqrt{2}$	AI
	$\theta = 0.4271$	M1
	$\theta = \pi - 0.4271$	IVII
	$\theta = 0.4271, 2.71$	A1

2a	2x - 3 = e	M1
	$x = \frac{1}{2}(e+3)$	M1
	2	A1
2b	$3e^{2y} - 16e^y + 5 = 0$	M1
	$(3e^{y}-1)(e^{y}-5)=0$	M1
	$e^{y} = \frac{1}{3}$ $e^{y} = 5$	A1
	$y = \ln \frac{1}{3}$	M1 A1
	$y = \ln 5$	AI

3 a	$r = \frac{114}{12} = 0.95$	M1
	$u_5 = 120 \text{ x} (0.95)^4 = 97.74$	M1
	Therefore, 1 h 38 minutes	A1
3b	$S_8 = \frac{120 \left[1 - (0.95)^8 \right]}{1 - (0.95)^8}$	M1
	J8 – <u>1</u> –0.95	A1
	= 807.79 minutes	A1
	= 13 hours 28 minutes	AI
3 c	$120 \ge (0.95)^{n-1} < 60$	M1
	$(n-1)\log 95 < \log 0.5$	M1
	$n > \frac{\log 0.5}{\log 0.95} + 1$	A1
	n > 14.51, therefore 15 papers.	A1

4a	$\frac{8\sin x}{\cos x} - 3\cos x = 0$	M1
	$8\sin x - 3\cos^2 x = 0$	M1
	$8\sin x - 3(1 - \sin^2 x) = 0$	
	$3\sin^2 x + 8\sin x - 3 = 0$	A1
4b	$(3\sin x - 1)(\sin x + 3) = 0$	M1
	$\sin x = -3$ (no solutions)	
	$\sin x = -\frac{1}{2}$	A1
	x = 0.34	B1
	$x = \pi - 0.34$	M1
	<i>x</i> = 0.34	A1
	x = 2.80	A1

5a	$f(x) \leq 3$	B1
5b	$y = f(x)$ $y = f^{-1}(x)$ $O \qquad x$	B3
5c	$y = 3 - x^2$ $x^2 = 3 - y$	M1
	$x^{2} = 3 - y$ $x = \pm \sqrt{3 - y}$	M1
	$f^{-1}(x) = \sqrt{3 - x}, x \le 3$	A2
5d	³ ³ 9	M1 A1
5e	$\sqrt{3-x} = \frac{8}{3-x}$	241
	$3 - x = \frac{64}{(3-x)^2}$	M1
	$\sqrt{3 - x} = \frac{8}{3 - x}$ $3 - x = \frac{64}{(3 - x)^2}$ $(3 - x)^3 = 64$ $3 - x = 4$	M1
	x = -1	A1

6 a	t = 10	
	T = 18	
	$18 = 5 + Ae^{-10k}$	
		M1
	t = 60	
	T = 12	
	$12 = 5 + Ae^{-60k}$	
	$A = \frac{13}{e^{-10k}} = 13e^{10k}$	M1
	$7 = 13e^{10k} \ge e^{-60k}$	
	$e^{-50k} = \frac{7}{12}$	A1
	$\frac{k}{k} = -\frac{1}{50} \ln \frac{7}{13} = 0.0124$	M1
		A1
-	$A = 13e^{10 \times 0.01238} = 14.7$	A1
6b	$T = 5 + 14.71e^{-0.01238t}$	M1
	$\frac{dT}{dt} = -0.01238 \times 14.71e^{-0.01238t} = -0.1822e^{-0.01238t}$	A1
	When $t = 20$,	
	$\frac{dT}{dt} = -0.1822e^{-0.01238 \times 20} = -0.142$	M1
	Therefore, temperature decreasing at a rate of 0.142°C per minute (3 s.f)	A1
6c	$T = 5 + 14.71e^{-0.01238(t-60)}$	M1
	$= 5 + 14.71e^{0.7428 - 0.01238t}$	MI
	$= 5 + 14.71e^{0.7428} \ge e^{-0.01238t}$	M1
	$= 5 + 30.9e^{-0.01238t}$	A 1
	B = 30.9 (3 s.f)	A1

7a $\frac{dy}{dx} = 2x - \frac{1}{2}(4 + \ln x) \times \frac{1}{x} = 2x - \frac{1}{2x\sqrt{4 + \ln x}}$	M1
$\frac{dx}{dx} = \frac{1}{2} \left(\frac{1}{2} + \frac$	A1
x = 1	
y = -1	A1
gradient = $\frac{7}{4}$	
$y+1=\frac{7}{4}(x-1)$	M1
4y + 4 = 7x - 7 7x - 4y = 11	
7x - 4y = 11	AI
	9 Ma

7b	SP: $2x - \frac{1}{2x\sqrt{4 + \ln x}} = 0$	M1
	$\operatorname{Let} f(x) = 2x - \frac{1}{2x\sqrt{4 + \ln x}}$	M1
	$ \begin{array}{l} f(0.3) = -0.40 \\ f(0.4) = 0.088 \end{array} $	A1
7c	$2x - \frac{1}{2x\sqrt{4 + \ln x}} = 0$	
	$2x = \frac{1}{2x\sqrt{4+\ln x}}$	M1
	$x^{2} = \frac{1}{4\sqrt{4 + \ln x}} = \frac{1}{4} (4 + \ln x)^{-\frac{1}{2}}$	
	$x = \sqrt{\frac{1}{4}(4 + \ln x)^{-\frac{1}{2}}} = \frac{1}{2}(4 + \ln x)^{-\frac{1}{4}}$	A1
	$x_1 = 0.38151$	
	$ \begin{array}{l} x_2 = 0.37877 \\ x_3 = 0.37900 \end{array} $	M1 A2
	$x_3 = 0.37900$ $x_4 = 0.37898$	A2

8 a	$=2^{-3}\left(1-\frac{3}{2}x\right)^{-3}=\frac{1}{8}\left(1-\frac{3}{2}x\right)^{-3}$	B1
	$= \frac{1}{8} \left[1 + (-3) \left(-\frac{3}{2}x \right) + \frac{(-3)(-4)}{2} \left(-\frac{3}{2}x \right)^2 + \frac{(-3)(-4)(-5)}{3 \times 2} \left(-\frac{3}{2}x \right)^3 + \dots \right]$	M1
	$\frac{1}{8} + \frac{9}{16}x + \frac{27}{16}x^2 + \frac{135}{32}x^3 + \cdots$	A3
8b	$ x < \frac{2}{3}$	B1

9a	$2x + 3y + 3x\frac{dy}{dx} - 4y\frac{dy}{dx} = 0$	M1 A2
	$\frac{dy}{dx} = \frac{2x+3y}{4y-3x}$	M1 A1
9b	$\text{Gradient} = \frac{6-6}{-8-9} = 0$	M1
	Normal parallel to y-axis	M1
	<i>x</i> = 3	A1

10a	$2x^{3} - 5x^{2} + 6 \equiv (Ax + B)x(x - 3) + C(x - 3) + Dx$	M1
	x = 0	
	6 = -3C $C = -2$	
	<i>C</i> = -2	
		A1
	<i>x</i> = 3	
	15 = 3D	
	D=5	
	Coefficients of x^3 , $A = 2$	B1
	Coefficients of x^2 , $B = 1$	M1
		A1
10b	$\int_{1}^{2} 2x + 1 - \frac{2}{x} + \frac{5}{x-3} dx$ $[x^{2} + x - 2 \ln x + 5 \ln x-3]_{1}^{2}$	M1
	$[x^{2} + x - 2 \ln x + 5 \ln x - 3]_{1}^{2}$	A2
	$(4 + 2 - 2 \ln 2 + 0) - (1 + 1 + 0 + 5 \ln 2)$	M1
	$= 4 - 7 \ln 2$	A1

$11a \int x dx = \int k(5-t) dt$	M1
$\frac{1}{2}x^2 = k(5t - \frac{1}{2}t^2) + c$	M1
	A1
t = 0, x = 0 c = 0	B1
t = 2, x = 96	M1
	ha ha
	114

	4608 = 8k	A1
	<i>k</i> = 576	
	$t = 1, \frac{1}{2}x^2 = 576 \times \frac{9}{2}$	M1
	x = 72	A1
11b	3 hours, 5 mins	M1
	t = 3.8033	A1
	x = 110.83	АІ
	$\frac{dx}{dx} = \frac{576(5-3.0833)}{9.96} = 9.96$	M1
	$\frac{dt}{dt} = 110.83$ 110.83 $\frac{dx}{dt} < 10$ so she should have left	
	$\frac{dx}{dt}$ < 10 so she should have left	A1

12a	$\frac{\frac{dx}{dt}}{\frac{dy}{dx}} = 6\cos t \times (-\sin t)$ $\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = 2\cos 2t$ $\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = \frac{2\cos 2t}{\frac{2\cos 2t}{dx}} = -\frac{2}{2}\cot 2t$	M1 A1
	$\frac{dy}{dx} = \frac{2\cos 2t}{-6\cos t\sin t} = \frac{2\cos 2t}{-3\sin 2t} = -\frac{2}{3}\cot 2t$	M1 A1
12b	$2t = \frac{\pi}{2}, t = \frac{\pi}{4}$ $2t = \frac{3\pi}{2}, t = \frac{3\pi}{4}$	M1 A1
	$(\frac{3}{2}, 1)$ $(\frac{3}{2}, -1)$	A1
12c	$\frac{y^2 = \sin^2 2t = 4 \sin^2 t \cos^2 t = 4(1 - \cos^2 t) \cos^2 t}{\cos^2 t = \frac{x}{3}}$	M2
	$y^{2} = 4(1 - \frac{x}{3})\frac{x}{3}$ $y^{2} = \frac{4}{9}x(3 - x)$	M1 A1

<u>Topic List</u>

Q1	Proof by contradiction and solving logs
Q2	Natural logs and exponentials
Q3	Sequences and series
Q4	Solving trig equations
Q5	Functions
Q6	Exponential modelling
Q7	Differentiation and numerical methods
Q8	Binomial expansion
Q9	Implicit differentiation
Q10	Partial fractions
Q11	Modelling differential equations
Q12	Parametric differentiation and cartesian equations

