

Topic: Vectors

Chapter Reference: Mechanics 2, Chapter 8

8 minutes

1. A particle P moves with constant acceleration. At time $t = 0$, the particle is at O and is moving with velocity $(2\mathbf{i} - 3\mathbf{j})\text{ms}^{-1}$. At time $t = 2$ seconds, P is at the point A with position vector $(7\mathbf{i} - 10\mathbf{j})\text{m}$.		
a. Show that the magnitude of the acceleration of P is $2.5 \mathrm{ms}^{-2}$	(4	
t the instant when P leaves the point A , the acceleration of P changes so that P now moves with constant celeration $(4\mathbf{i} + 8.8\mathbf{j})\text{ms}^{-2}$		
At the instant when P reaches the point B , the direction of motion of P is north east.		
(b) Find the time it takes for P to travel from A to B.	(4	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	

Solutions

1a.

$\mathbf{r} = \mathbf{u}\mathbf{t} + \frac{1}{2}\boldsymbol{a}t^2$	M1
$(7\mathbf{i} - 10\mathbf{j}) = 2(2\mathbf{i} - 3\mathbf{j}) + \frac{1}{2}a2^2$	M1
$\mathbf{a} = (1.5\mathbf{i} - 2\mathbf{j})$	M1
$\mathbf{a} = \sqrt{1.5^2 + (-2)^2} = 2.5 \mathrm{ms}^{-2}$	M1

1b.

$\mathbf{v} = \mathbf{u} + \mathbf{a}\mathbf{t}$	M1
$\mathbf{v} = (2\mathbf{i} - 3\mathbf{j}) + 2(1.5\mathbf{i} - 2\mathbf{j})$ $\mathbf{v} = (5\mathbf{i} - 7\mathbf{j})$	M1
$\mathbf{v} = (5\mathbf{i} - 7\mathbf{j}) + t(4\mathbf{i} + 8.8\mathbf{j})$ = $(5 + 4t)\mathbf{i} + (8.8t - 7)\mathbf{j}$	M1
(5+4t) = (8.8t-7) t = 2.5 s	M1

