A-Level Starter **Activity**

Topic: Converting Units and **Assumptions**

Chapter Reference: Mechanics 1, Chapter 8

6 minutes

1. Covert to SI units,	
a. 2.5 km per minute	(2)
b. 0.6kg cm ⁻²	(2)
c. $1.2 \times 10^3 \text{ gcm}^{-3}$	(2)
2. A man throws a bowling ball in a bowling alley.	
a. Make a list of assumptions you might make to create a simple model of the motion of the bowling bowl.	(2)
b. Taking the direction that the ball travels in as the positive direction, state with a reason, whether each of th	e `´
following are likely to be positive or negative,	
i. The velocity	(1)
ii. The acceleration	(1)
	(-)

Solutions

la.	
2.5 ×1000	M1
60	
$= 41.7 \text{ m s}^{-1}$	M1
1b.	
	M1
1÷(100×100)	
$= 6000 \text{ kg m}^{-2}$	M1
1c.	
$1.2 \times 10^3 \times (100 \times 100 \times 100)$	M1
	M1
$= 1.2 \times 10^6 \text{ kg m}^{-3}$	M1
	•
2a.	
Model the ball as a particle	M1
Assume the floor is smooth	M1
2bi.	
The velocity will be positive as the positive direction is defined as such.	M1
The velocity will be positive as the positive direction is defined as such.	174.1
2bii.	
	1
In real life the acceleration would be negative, as the ball always slows down. However, if we	M1
assume there is no friction, then the ball would move at constant velocity.	1711

Topic: Modelling with Vectors

Chapter Reference: Mechanics 1, Chapter 8

6 minutes

 The velocity of a toy car is given by v = 3.5i - 2.5j ms⁻¹. Find, The speed of the toy car The angle the direction of motion of the tour car makes with the unit vector j. 	(2) (4)

Solutions

1a.

$ v = \sqrt{3.5^2 + 2.5^2}$ $ v = \sqrt{4.30}$	M1
v = 4.30 (to 3 s.f) Therefore, the speed of the toy car is 4.30 ms ⁻¹	M1

1b.

Let the acute angle made with \mathbf{j} be θ , then	M1
$\tan \theta = \frac{3.5}{2.5} = 1.4$	M1
$\theta = 54.5^{\circ}$	M1
Angle required = $180 - \theta = 180 - 54.5 = 126^{\circ}$	M1

A-Level Starter Activity

Topic: Horizontal Motion with Vectors

Chapter Reference: Statistics 2, Chapter

8 minutes

1. A particle P moves with constant acceleration. At time $t = 0$, the particle is at O and is moving with velocity $(2\mathbf{i} - 3\mathbf{j})$ ms^{-1} . At time $t = 2$ seconds, P is at the point A with position vector $(7\mathbf{i} - 10\mathbf{j})$ m. a. Show that the magnitude of the acceleration of P is 2.5 ms ⁻² .	city (4)
a. Show that the magnitude of the acceleration of T is 2.3 ms.	(ד)
At the instant when P leaves the point A , the acceleration of P changes so that P now moves with constant acceleration $(4\mathbf{i} + 8.8\mathbf{j}) \text{ ms}^{-2}$.	
At the instant when P reaches the point B , the direction of motion of P is north east.	
b. Find the time it takes for P to travel from A to B .	(4)

Solutions

1a.	
$s = 7\mathbf{i} - 10\mathbf{j}$ $u = 2\mathbf{i} - 3\mathbf{j}$ $a = ?$	
$u = 2\mathbf{i} - 3\mathbf{j}$	M 1
a = ?	1711
t=2	
$ \binom{7}{-10} = \binom{2}{3}(2) + \frac{1}{2}a(2)^2 $	M1
$\begin{pmatrix} 1 \\ -10 \end{pmatrix} = \begin{pmatrix} 4 \\ -6 \end{pmatrix} + 2a$	1411
$a = \begin{pmatrix} 1.5 \\ -2 \end{pmatrix}$	M1
$a = \sqrt{1.5^2 + (-2)^2}$ $a = 2.5 \text{ ms}^{-2}$	M1
$a = 2.5 \text{ ms}^2$	

<u>lb.</u>	
$v = u + at$ $v = {2 \choose 3} + \frac{1}{2} {3 \choose 4} (2)$ $v = {5 \choose -7}$	M1
$\binom{a}{a} = \binom{5}{-7} + \binom{4}{8.8}T$	M1
Equating components:	
-7 + 8.8T = 5 + 4T	M1
4.8T = 12	
T = 2.5 seconds.	M1

