

A-level Further Mathematics Further Pure 1 and 2 Paper A

1.

 $z = -2 + (2\sqrt{3})i$

a. Find the modulus and the argument of z	[3]
Using de Moivre's theorem,	
b. Find z^6 , simplifying your answer.	[2]
c. Find the values of <i>w</i> such that $w^4 = z^3$, giving your answers in the form $a + ib$ where $a, b \in R$	[4]

(9 marks)

2.

(i) A group G contains distinct elements a, b and e where e is the identity element, and the group operation is multiplication.

Given $a^2b = ba$, prove $ab \neq ba$	
(ii) The set $H = \{1, 2, 4, 7, 8, 11, 13, 14\}$ forms a group under the operation of multiplication modulo 15. (a) Find the order of each element of <i>H</i> .	[3]

(b) Find three subgroups of H each of order 4, and describe each of these subgroups. [4]

The elements of another group J are the matrices

$$\begin{array}{c}
\cos\left(\frac{k\pi}{4}\right) & \sin\left(\frac{k\pi}{4}\right) \\
-\sin\left(\frac{k\pi}{4}\right) & \cos\left(\frac{k\pi}{4}\right)
\end{array}$$

where k = 1, 2, 3, 4, 5, 6, 7, 8 and the group operation is matrix multiplication.

(c) Determine whether H and J are isomorphic, giving a reason for your answer. [2]

(13 marks)

3.

$$z = 2 - i\sqrt{3}$$

a. Calculate arg z, giving your answer in radians to 2 decimal places. [2]
Use algebra to express,

b. $z + z^2$ in the form $a + bi\sqrt{3}$, where a and b are integers. [3]

c. $\frac{z+7}{z-1}$ in the form $c + di\sqrt{3}$, where c and d are integers. [4]

Given that,

 $w = \gamma - 3i$

Where γ is a real constant and $\arg(4 - 5i + 3w) = -\frac{\pi}{2}$.

d. Find the value of γ

4a. Use the standard results for $\sum_{r=1}^{n} r^3$ and $\sum_{r=1}^{n} r$ to show that,

$$\sum_{r=1}^{n} (r^3 + 6r - 3) = \frac{1}{4}n^2(n^2 + 2n + 13)$$

For all positive integers n

b. Hence find the exact value of,

$$\sum_{r=16}^{30} (r^3 + 6r - 3)$$

[2]

5. Given that

 $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix}$

a. Find the characteristic equation of the matrix A.

b. Hence show that $A^3 = 43A - 42I$

6. A sequence of numbers is defined by

Prove by induction that, for $n \in \mathbb{R}$, $u_n = 4^n + 3n + 1$

7. The line l_1 has vector equation,

$r = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-1\\3 \end{pmatrix}$

 $u_1 = 8u_{n+1} = 4u_n - 9n, \ n \ge 1$

and the line l_2 has vector equation,

$$r = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \mu \begin{pmatrix} 3\\-4\\1 \end{pmatrix}$$

Where, λ and μ are parameters.

The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ .

a. Write down the coordinates of A.

[1]

(7 marks)

(3 marks)

[3]

(5 marks)

[3]

[5]

(11 marks)

[2]

[2]

	(12 marks)
f. Find the length of AY, giving your answer to 3 significant figures.	[3]
The point Y lies on l_2 . Given that the vector \overrightarrow{YX} is perpendicular to l_1 ,	
e. Hence, or otherwise, show that $\left \overrightarrow{AX} \right = 4\sqrt{26}$	[2]
d. Find the vector \overrightarrow{AX}	[2]
c. Find the coordinates of <i>X</i>	[1]
The point X lies on l_1 where $\lambda = 4$.	
b. Find the value of $\cos \theta$.	[3]

End of Paper Total Marks: 60

Mark Scheme

Question Number	Scheme	Marks
2 (a)	z = 4	B1
	$\arg z = \arctan\left(\frac{-2\sqrt{3}}{2}\right) = \arctan\left(-\sqrt{3}\right) = \frac{2\pi}{3}$ or 120°	M1A1 (3)
(b)	$z^{6} = \left(4\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)\right)^{6} = 4^{6}\left(\cos 4\pi + i\sin 4\pi\right) \text{ or } z^{6} = \left(4e^{i\frac{2\pi}{3}}\right)^{6}$	M1
	$=4096 \text{ or } 4^6 \text{ or } 2^{12}$	A1 cso (2)
	(a) and (b) can be marked together	
(c)	$z^{\frac{3}{4}} = 4^{\frac{3}{4}} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)^{\frac{3}{4}} = 4^{\frac{3}{4}} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$	
	$w = i2\sqrt{2}$ oe or any other correct root	B1
	$4^{\frac{3}{4}} \left(\cos\left(\frac{2\pi}{3} + 2n\pi\right) + i\sin\left(\frac{2\pi}{3} + 2n\pi\right) \right)^{\frac{3}{4}}$ (n=0 see above) n=1 w=2\sqrt{2} oe n=2 w=-i2\sqrt{2} oe n=3 w=-2\sqrt{2} oe	M1 A1A1 (4) [9]

Question	Scheme	Marks	AOs
4(i)	If we assume $ab = ba$; as $a^2b = ba$ then $ab = a^2b$	M1	2.1
	So $a^{-1}abb^{-1} = a^{-1}a^2bb^{-1}$	M1	2.1
	so $e=a$	A1	2.2a
	But this is a contradiction, as the elements e and a are distinct so $ab \neq ba$	A1	2.4
		(4)	
(ii)(a)	2 has order 4 and 4 has order 2	M1	1.1b
	7, 8 and 13 have order 4	A1	1.1b
	11 and 14 have order 2 and 1 has order 1	A1	1.1b
		(3)	
(ii)(b)	Finds the subgroup $\{1, 2, 4, 8\}$ or the subgroup $\{1, 7, 4, 13\}$	M1	1.1b
	Finds both and refers to them as cyclic groups, or gives generator 2 and generator 7	A1	2.4
	Finds {1, 4, 11, 14}	B1	2.2a
	States each element has order 2 or refers to it as Klein Group	B1	2.5
		(4)	
(ii)(c)	J has an element of order 8, (H does not) or J is a cyclic group (H is not) or other valid reason	M1	2.4
	They are not isomorphic	A1	2.2a
		(2)	
		(13 n	aarks)

Question Number	Scheme	Notes	Marks
7. (a)	$\arg z = -\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$	$\tan^{-1}\left(\pm\frac{\sqrt{3}}{2}\right)$ or $\tan^{-1}\left(\pm\frac{2}{\sqrt{3}}\right)$ seen or evaluated	M1
	Awrt ±0.71 or awrt ±0.86 can be taken as evidence for the method mark.		
	Or ± 40.89 or ± 49.10 if working in degrees		
	= -0./13/243/89 = -0./1(2 dp)	awrt -0./1 or awrt 5.5/	AI
	NB $\tan\left(\frac{\sqrt{3}}{2}\right) = 1.18$ and $\tan\left(\frac{2}{\sqrt{3}}\right)$	= 2.26 and both score M0	
			[2]
(b)	$z^{2} = (2 - i\sqrt{3})(2 - i\sqrt{3})$ = 4 - 2i\sqrt{3} - 2i\sqrt{3} + 3i^{2}	An attempt to multiply out the brackets to give four terms (or four terms implied).	M1
	$= 2 - i\sqrt{3} + (4 - 4i\sqrt{3} - 3)$	M1: An understanding that $i^2 = -1$ and an attempt to add z and put in the form	
	$= 2 - i\sqrt{3} + (1 - 4i\sqrt{3})$	$a + bi\sqrt{3}$	MIAI
	$= 3 - 5i\sqrt{3}$ (Note: $a = 3, b = -5.$)	A1: 3 − 5i√3	
	$z + z^2 = 2 - i\sqrt{3} + (4 - 4i\sqrt{3} + 3) = 9 - 5i$	$\sqrt{3}$ scores M1M0A0 (No evidence of $i^2 = -1$)	
			[3]
(c)	$\frac{z+7}{z-1} = \frac{2-i\sqrt{3}+7}{2-i\sqrt{3}-1}$	Substitutes $z = 2 - i\sqrt{3}$ into both numerator and denominator.	M1
	$=\frac{\left(9-i\sqrt{3}\right)}{\left(1-i\sqrt{3}\right)}\times\frac{\left(1+i\sqrt{3}\right)}{\left(1+i\sqrt{3}\right)}$	Simplifies $\frac{z+7}{z-1}$ and multiplies by $\frac{\text{their } (1+i\sqrt{3})}{\text{their } (1+i\sqrt{3})}$	d M1
	$= \frac{9+9i\sqrt{3}-i\sqrt{3}+3}{1+3}$ $= \frac{12+8i\sqrt{3}}{4}$	Simplifies realising that a real number is needed in the denominator and applies $i^2 = -1$ in their numerator expression and denominator expression.	MI
	$= 3 + 2i\sqrt{3}$ (Note: $c = 3, d = 2.$)	$3 + 2i\sqrt{3}$	A1
			[4]
(d)	$w = \lambda - 3i$, and $arg(4 - 3i)$	$-5i + 3w) = -\frac{\pi}{2}$	
	(4-5i+3w=4)	+ 3 <i>λ</i> - 14i)	
	So real part of $(4 - 5i + 3w) = 0$ or $4 + 3\lambda = 0$	States real part of $(4 - 5i + 3w) = 0$ or $4 + 3\lambda = 0$	M1
	So, $\lambda = -\frac{4}{3}$	$-\frac{4}{3}$	A1
			[2]
	Allow $\pm \left(\frac{14}{3\lambda + 4}\right) = \pm \infty \Longrightarrow 3\lambda$	$+4 = 0 \operatorname{M1} \Rightarrow \lambda = -\frac{4}{3} \operatorname{A1}$	
			11 marks

Question	Scheme	Notes	Marks
4. (a)	$\sum_{r=1}^{n} \left(r^3 + 6r - 3 \right)$		
		M1; An attempt to use at least one of the standard formulae correctly in summing at least 2 terms of $r^3 + 6r - 3$	
	$= \frac{\frac{1}{4}n^2(n+1)^2}{\frac{1}{2}n(n+1)} + \frac{1}{2}\frac{1}{2}n(n+1) - 3n$	A1: Correct underlined expression.	M1A1B1
		B1:-3 \rightarrow -3n	
	$= \frac{1}{4}n^2(n+1)^2 + 3n^2 + 3n - 3n$		
	If any marks have been lost, no furth	her marks are available in part (a)	
	$= \frac{1}{4}n^{2}(n+1)^{2} + 3n^{2}$ $= \frac{1}{4}n^{2}((n+1)^{2} + 12)$	Cancels out the 3 <i>n</i> and attempts to factorise out at least $\frac{1}{4}n$.	dM1
	$= \frac{1}{4}n^2 \left(n^2 + 2n + 13\right) $ (AG)	Correct answer with no errors seen.	A1 *
	Provided the first 3 marks are scored, allow the next two marks for correctly showing the algebraic equivalence. E.g. showing that both		
	$\frac{1}{4}n^2(n+1)^2 + 6.\frac{1}{2}n(n+1) - 3n$ and $\frac{1}{4}n^2(n^2 + 1) - 3n^2 + 10^2 + 1$	$2n + 13) = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{13}{4}n^2$	
	There are no marks for proof by induct	ion but apply the scheme if necessary.	
			5
(b)	$S_n = \sum_{r=16}^{30} (r^3 + 6r - 3) = S_{30} - S_{15}$		
	$= \frac{1}{4} (30)^2 (30^2 + 2(30) + 13) - \frac{1}{4} (15)^2 (15^2 + 2(15)^2 + 13) - \frac{1}{4} (15)^2 (15^2 + 2(15)^2 + 13) - \frac{1}{4} (15)^2 (15^2 + 13) - \frac{1}{4} (15)^2 (15)^2 (15^2 + 13) - \frac{1}{4} (15)^2$	(5) + 13) Use of $S_{30} - S_{15}$ or $S_{30} - S_{16}$	M1
	NB They must be using $S_n = \frac{1}{4}n^2(n^2 + 2n + 13)$ not $S_n = n^3 + 6n - 3$		
	= 218925 - 15075		
	= 203850	203850	Al cao
	NB $S_{30} - S_{16} = 218925 - 19264 = 199661$ (Scores M1 A0)		
			[2]
			7 marks

Question	Scheme	Marks	AOs
б(а)	Consider det $\begin{pmatrix} 3-\lambda & 1\\ 6 & 4-\lambda \end{pmatrix} = (3-\lambda)(4-\lambda) - 6$	M1	1.1b
	So $\lambda^2 - 7\lambda + 6 = 0$ is characteristic equation	A1	1.1b
		(2)	
	So $A^2 = 7A - 6I$	B1ft	1.1b
(b)	Multiplies both sides of their equation by A so $A^3 = 7A^2 - 6A$	M1	3.1a
	Uses $A^3 = 7(7A - 6I) - 6A$ So $A^3 = 43A - 42I^*$	A1*cso	1.1b
		(3)	
(5 marks)			
Notes:			
 (a) M1: Complete method to find characteristic equation A1: Obtains a correct three term quadratic equation – may use variable other than λ 			
(b) B1ft: Uses Cayley Hamilton Theorem to produce equation replacing λ with A and constant term with constant multiple of identity matrix, I			

M1: Multiplies equation by A
 A1*: Replaces A² by linear expression in A and achieves printed answer with no errors

$ \begin{array}{c} u_1 = 8\\ n = 1 \end{array} $	B1
Assume true for n = k so that $u_k = 4^k + 3k + 1$	
$u_{k+1} = 4(4^k + 3k + 1) - 9k$	
$=4^{k+1}+12k+4-9k$	A1
$=4^{k+1}+3k+4$	
$=4^{k+1}+3(k+1)+1$	
If true for $n = k$, then true for $n = k + 1$ and as true for $n = 1$, true for all n	A1

Question Number	Scheme	Marks	
Q4	(a) A: (-6, 4, -1) Accept vector forms	B1	(1)
	(b) $\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix} = 12 + 4 + 3 = \sqrt{4^2 + (-1)^2 + 3^2} \sqrt{3^2 + (-4)^2 + 1^2} \cos \theta$	M1 A1	
	$\cos\theta = \frac{19}{26} \qquad \text{awrt } 0.73$	A1	(3)
	(c) X: (10, 0, 11) Accept vector forms	B1	(1)
	(d) $\overrightarrow{AX} = \begin{pmatrix} 10\\0\\11 \end{pmatrix} - \begin{pmatrix} -6\\4\\-1 \end{pmatrix}$ Either order	M1	
	$= \begin{pmatrix} 16\\ -4\\ 12 \end{pmatrix} $ cao	A1	(2)
	(e) $\left \overrightarrow{AX} \right = \sqrt{16^2 + (-4)^2 + 12^2}$	M1	
	$=\sqrt{416} = \sqrt{16 \times 26} = 4\sqrt{26}$ * Do not penalise if consistent incorrect signs in (d)	A1	(2)
	(f) $4\sqrt{26}$ A d d Y l_2	M1 M1 A1	(3) 12]