

Topic: Modelling with Differential Equations (1)

Chapter Reference: Core Pure 2, Chapter 8

8 minutes

1. The total value of the sales made by a new company in the first t years of its existence is denoted by £ V . A
model is proposed in which the rate of increase of V is proportional to the square root of V. The constant of
proportionality is k .
a. Express the model as a differential equation.
Verify by differential that $V = (\frac{1}{2}kt + c)^2$, where c is an arbitrary constant, satisfies this differential
-
equation. (4)
b. The value of the company's in its first year is £10000, and the total value of the sales in the first two years is
£40000. Find V in terms of t . (4)
240000. I ilid V III terms of t.

1a.	
$ \frac{dV}{dt} = k\sqrt{V} $ $ V = (\frac{1}{2}kt + c)^{2} $ $ \frac{dV}{dt} = 2(\frac{1}{2}kt + c)^{2} \cdot \frac{1}{2}k $	B1
$V = (\frac{1}{2}kt + c)^2$ $\frac{dV}{dt} = 2(\frac{1}{2}kt + c)^2 \cdot \frac{1}{2}k$	M1
$= k(\frac{1}{2}kt + c)$ $= k\sqrt{V}$	A1
$=k\sqrt{V}$	A1

1b.	
$\left(\frac{1}{2}kt+c\right)^2 = 10000 \Rightarrow \frac{1}{2}k+c = 100$	B 1
$(k+c)^2 = 40000 \Rightarrow k+c = 200$	B1 M1
$ \begin{array}{c} 1/_{2} k = 100 \\ k = 200 c = 0 \end{array} $	
	A1
$V = (100t)^2 = 10000t^2$	

Topic: Modelling with Differential Equations (2)

Chapter Reference: Core Pure 2, Chapter 8

o minutes

1.	The	motion	of a	ı particle is	modelled	by the	differential	equation
----	-----	--------	------	---------------	----------	--------	--------------	----------

$$v\frac{dv}{dx} + 4x = 0,$$

where x is its displacement from a fixed point, and v is its velocity.

Initially $x = 1$ and $v = 4$.	
a. Solve the differential equation to show that $v^2 = 20 - 4x^2$	(4)
Now consider motion for which $x = \cos 2t + 2 \sin 2t$, where x is the displacement from a fixed j	noint at time t
b. Verify that, when $t = 0$, $x = 1$. Use the fact that $v = \frac{dx}{dt}$ to verify that when $t = 0$, $v = 4$.	(4)

1a.	
$v \frac{dv}{dx} + 4x = 0$ $\int v dv = -\int 4x dx$ $\frac{1}{2}v^2 = -2x^2 + c$ When $x = 1, v = 4$, so $c = 10$	M1 A1 B1
So $v^2 = 20 - 4x^2$	A1

1b.

$x = \cos 2t + 2\sin 2t$	B1
when $t = 0$, $x = \cos 0 + 2 \sin 0 = 1$	M1
dx	ļ
$v = \frac{dt}{dt} = -2\sin 2t + 4\cos 2t$	A1
$v = 4\cos 0 - 2\sin 0 = 4$	A1

Topic: Modelling with Differential Equations (3)

Chapter Reference: Core Pure 2, Chapter 8

g minutes

1. The displacement x at time t of an oscillating system from a fixed point is given by	
$\ddot{x} + 2\lambda \dot{x} + 5x = 0,$	
where $\lambda \geq 0$.	
a. For what value of λ is the motion simple harmonic? State the general solution in this case.	(3)
b. Find the range of values of λ for which the system is under-damped.	(3)
Consider the case $\lambda = 1$.	
c. Find the general solution of the differential equation.	(3)

1a.	
$\lambda = 0$	B1
$x = A\cos\sqrt{5}t + B\sin\sqrt{5}t$	M1
Trees vot 1 B sin vot	A1
1b.	
$(2\lambda)^2 - 4.5 < 0$ $0 < \lambda < \sqrt{5}$	M1
$0 < \lambda < \sqrt{5}$	A1
	A1
1c.	
$m^2 + 2m + 5 = 0$	M1
$m = -1 \pm 2i$	A1
$x = e^{-t}(C\cos 2t + D\sin 2t)$	F1

Topic: Modelling with Differential Equations (4)

Chapter Reference: Core Pure 2, Chapter 8

8 minutes

1. A car travels over a rough surface. The vertical	motion of the front suspension	is modelled by the differenti	al
equation			

$$\frac{d^2y}{dt^2} + 25y = 20\cos 5t,$$

where y is the vertical displacement of the top of the suspension and t is time. Find the general solution.	(8)
	(-,

1.	
$m^2 + 25 = 0$	M1
$m = \pm 5i$	A1
$C.F. y = A \cos 5t + B \sin 5t$	F1
P.I. $at\cos 5t + bt \sin 5t$	B1
$\dot{y} = a\cos 5t - 5at\sin 5t + b\sin 5t + 5bt\cos 5t$	M1
$\ddot{y} = -10 \arcsin 5t - 25at \cos 5t + 10b \cos 5t - 25bt \sin 5t$	M1
\Rightarrow b = 2, a = 0	A1
$P.I. y = 2t \sin 5t$	
G.S. $y = 2t \sin 5t + A \cos 5t + B \sin 5t$	F1

Topic: Modelling with Differential Equations (5)

Chapter Reference: Core Pure 2, Chapter 8

5 minutes

1. The following simultaneous	differential equations ar	e to be solved.
-------------------------------	---------------------------	-----------------

$$\frac{dx}{dt} = -5x + 4y + e^{-2t},$$

	$dt = 3x + 4y + \epsilon$,	$dt = 3x + 4y + e^{-x}$	
	$\frac{dy}{dt} = -9x + 7y + 3e^{-2t}$		
Show that $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = 3e^{-2t}$		(5)	

]	1.	
	$\ddot{x} = -5\dot{x} + 4\dot{y} - 2e^{-2t}$	M1
	$= -5\dot{x} + 4(-9x + 7y + 3e^{-2t}) - 2e^{-2t}$	M1
	$= -5\dot{x} - 36 + \frac{28}{4}(\dot{x} + 5x - e^{-2t}) + 10e^{-2t}$	M1
	$\frac{3x}{4}$	M1
	$\therefore \frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = 3e^{-2t}$	E 1

