

Topic: Chi-Squared Tests (1)

Chapter Reference: Further Statistics 1, Chapter 6

minutes

1. A quality control manager regularly samples 20 items from a production line and records the number of defective items *x*. The results of 100 such samples are given in Table 1 below.

x	0	1	2	3	4	5	6	7 or more
Frequency	17	31	19	14	9	7	3	0

Table 1

The manager claimed that the number of defective items in a sample of 20 can be modelled by a binomial distribution. He used $X \sim B(20, 0.1)$ to calculate the expected frequencies given in Table 2.

x	0	1	2	3	4	5	6	7 or more
Frequency	12.2	27.0	28.5	19.0	9	3.2	0.9	0.2

Table 2

·	 	 	

1.

x	0	1	2	3	≥4]		
O_i	17	31	19	14	19			
E_i	12.2	27.0	28.5	19.0	13.3	M1		
$\frac{(0-\mathbf{E})^2}{\mathbf{E}}$	1.89	0.59	3.17	1.32	2.44			
L E						J		
$\sum \frac{(O-E)^2}{E} = 9.$	$\sum \frac{(O-E)^2}{E} = 9.41$ AWRT 9.4							
v = 5 - 2 = 3						B1		
$\chi_3^2 (5\%) = 7.815$								
H ₀ : Binomial d	istribution is a g	ood/suitable mod	lel/fit					
[Condone: B(20	0, 0.1) is]							
H1: Binomial distribution is not a suitable model								
(for hypotheses) allow just " $X \sim B(20, 0.1)$ " for null etc.								
(Significant res	sult) Binomial di	stribution is not a	a suitable model			A1		

Topic: Chi-Squared Tests (2)

Chapter Reference: Further Statistics 1, Chapter 6

10 minutes

1. An area of grass was sampled by placing a 1 m \times 1 m square randomly in 100 places. The numbers of daisies in each of the squares were counted. It was decided that the resulting data could be modelled by a Poisson distribution with mean 2. The expected frequencies were calculated using the model.

The following table shows the observed and expected frequencies.

Number of daisies	Observed frequency	Expected frequency
0	8	13.53
1	32	27.07
2	27	r
3	18	S
4	10	9.02
5	3	3.61
6	1	1.20
7	0	0.34
≥8	1	0.12

a.	Find values for r and s.	(2)
b.	Using a 5% significance level, test whether or not this Poisson model is suitable. State your hypotheses	
	clearly.	(7)

<u>1a.</u>

r = 27.07	A1
s = 18.04	A1

1b.

H ₀ : A Poisson model Po(2) is a suitable model.	Both
H ₁ : A Poisson model Po(2) is not a suitable model.	B1
Amalgamate data	M1
$\sum \frac{(O-E)^2}{E} = 3.28 \text{ (awrt)}$	M1A1
v = 6 - 1 = 5	B1
χ_5^2 (5 %) = 11.070 (follow through their degrees of freedom)	B1
3.25 < 11.070	
There is insufficient evidence to reject H ₀ ,	A1
Po(2) is a suitable model.	

Topic: Chi-Squared Tests and Contingency Tables (3)

Chapter Reference: Further Statistics 1, Chapter 6

10 minutes

1. Year 12 students at Coron Academy choose to participate in one of four sports during the Spring term, The students' choices are summarised in the table.

	Squash	Badminton	Archery	Hockey	Total
Male	5	16	30	19	70
Female	4	20	33	53	110
Total	9	36	63	72	180

gender.	(10)
	V \

1.

H ₀ : Choice indep	pendent of gender				B1			
	Squash	Badminton	Archery	Hockey				
Male	5/3.5	16/14	30/24.5	19/28	M1			
Female	4/3.5	20/22	33/38.5	53/44				
Combine Squash	n and Badminton				M1			
Squash & Archery Hockey Badminton								
Male	21/17.5	30/2	4.5	19/28	 M1			
Female	24/27.5	33/3	8.5	53/44				
	Squash & Badminton	Arch	nery	Hockey				
Male	Badminton 0.7000	1.23	-	2.8928	M1			
	0.7000	1.2.	947	2.0920				
Female	0.4455	0.78	357	1.8409				
$\chi_{\rm calc}^2 = 7.90$				(7.8 to 7.9)	A1			
v=2					B1			
$\frac{\chi^2_{5\%}(2) = 5.991}{\chi^2_{5\%}(2) = 5.991}$					B1			
Reject H ₀ Sufficient evidence, at the 1% level of significance, to support an association between the choice of sport and gender								

Topic: Chi-Squared Tests and Geometric Distribution (4)

Chapter Reference: Further Statistics 1, Chapter 6

10 minutes

1. The following table shows observed values for what is thought to be a geometric distribution with p = 0.5.

x	1	2	3	4	5	6	Total
Observed frequency O_x	56	27	13	3	0	1	100

Calculate the expected frequencies and, using a 5% significance level, conduct a good-of-fit test.	(6)

1.

H ₀ : $X \sim \text{Geo}(0.5)$ is H ₁ : $X \sim \text{Geo}(0.5)$ is		lel			B1
11]. A GCO(0.5) 15	not a suitable moe				
x	1	2	≥3	Total	
Expected frequency E_x	50	25	25	100	M1
					_
<i>x</i>	1	2	≥3	Total	41
$\frac{(\boldsymbol{O}_{x}-\boldsymbol{E}_{x})^{2}}{\boldsymbol{E}_{x}}$	0.72	0.16	2.56	3.44	M1
$X^2 = 3.44$					
v = 3 - 1 = 2					B1
$\chi_2^2(5\%) = 5.991$					B1
Since $5.991 > 3.44$ there is insufficient evidence to reject H ₀ at the 5% level $X \sim \text{Geo}(0.5)$ is a suitable model for the data.					A1

Topic: Chi-Squared Tests and Geometric Distribution (5)

Chapter Reference: Further Statistics 1, Chapter 6

10 minutes

1. Eli is practising the water bottle flip for a YouTube video. He records how many attempts he needs to correctly flip the water bottle on 100 separate occasions.

Attempts	1	2	3	4	5	Total
Frequency	34	22	14	18	12	100

a.	Using the observed frequencies, find an estimate for p to 3.d.p.	(2)
b.	Conduct a goodness-of-fit test at the 2.5% significance level, and say whether a geometric ran-	dom variable is
	a good model for the data.	(6)
		-
		417

ia.	
$p = \frac{1}{\bar{x}}$ $\bar{x} = \frac{\sum fx}{\sum f} = \frac{(34 \times 1) + (22 \times 2) + (14 \times 3) + (18 \times 4) + (12 \times 5)}{100} = 2.52$	M1
$p = \frac{1}{2.52} \approx 0.397$	A1

H ₀ : A geometric							B1
H ₁ : A geometric	distribution is	not a suitable	e model				D1
x	1	2	3	4	≥5	Total	
Expected frequency E_i	39.7	23.9	14.4	8.7	13.3	100	M1
			Ι 2				
$\frac{x}{(O_i - E_i)^2}$	0.818	0.151	0.011	9.941	≥5 0.127	Total 11.048	M1
$\frac{2^2}{1000} = 11.048$ = 5 - 1 = 4		l			l		B1
$\frac{v - 3 - 1 - 4}{\chi_4^2(2.5\%)} = 11.143$						B1	
Since $11.143 > 11.048$ there is insufficient evidence to reject H ₀ at the 2.5% level. Geometric distribution is a suitable model for the data.						A1	

