Topic: Chi-Squared Tests (1) Chapter Reference: Further Statistics 1, Chapter 6 minutes 1. A quality control manager regularly samples 20 items from a production line and records the number of defective items *x*. The results of 100 such samples are given in Table 1 below. | x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 or more | |-----------|----|----|----|----|---|---|---|-----------| | Frequency | 17 | 31 | 19 | 14 | 9 | 7 | 3 | 0 | Table 1 The manager claimed that the number of defective items in a sample of 20 can be modelled by a binomial distribution. He used $X \sim B(20, 0.1)$ to calculate the expected frequencies given in Table 2. | x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 or more | |-----------|------|------|------|------|---|-----|-----|-----------| | Frequency | 12.2 | 27.0 | 28.5 | 19.0 | 9 | 3.2 | 0.9 | 0.2 | #### Table 2 | |
 |
 |
 | |---|------|------|------| | |
 | |
 | | | | | | | | | |
 | | |
 |
 |
 | | |
 | |
 | | | | | | | | | | | | |
 |
 |
 | | |
 | | | | | | | | | | | | | | |
 |
 |
 | | · |
 |
 |
 | | | | | | | | | | | | |
 | | | | |
 | | | 1. | x | 0 | 1 | 2 | 3 | ≥4 |] | | | |---|--|---------------------|------------------|------|------|-----------|--|--| | O_i | 17 | 31 | 19 | 14 | 19 | | | | | E_i | 12.2 | 27.0 | 28.5 | 19.0 | 13.3 | M1 | | | | $\frac{(0-\mathbf{E})^2}{\mathbf{E}}$ | 1.89 | 0.59 | 3.17 | 1.32 | 2.44 | | | | | L E | | | | | | J | | | | $\sum \frac{(O-E)^2}{E} = 9.$ | $\sum \frac{(O-E)^2}{E} = 9.41$ AWRT 9.4 | | | | | | | | | v = 5 - 2 = 3 | | | | | | B1 | | | | $\chi_3^2 (5\%) = 7.815$ | | | | | | | | | | H ₀ : Binomial d | istribution is a g | ood/suitable mod | lel/fit | | | | | | | [Condone: B(20 | 0, 0.1) is] | | | | | | | | | H1: Binomial distribution is not a suitable model | | | | | | | | | | (for hypotheses) allow just " $X \sim B(20, 0.1)$ " for null etc. | | | | | | | | | | (Significant res | sult) Binomial di | stribution is not a | a suitable model | | | A1 | | | ### Topic: Chi-Squared Tests (2) Chapter Reference: Further Statistics 1, Chapter 6 10 minutes 1. An area of grass was sampled by placing a 1 m \times 1 m square randomly in 100 places. The numbers of daisies in each of the squares were counted. It was decided that the resulting data could be modelled by a Poisson distribution with mean 2. The expected frequencies were calculated using the model. The following table shows the observed and expected frequencies. | Number of daisies | Observed frequency | Expected frequency | |-------------------|--------------------|--------------------| | 0 | 8 | 13.53 | | 1 | 32 | 27.07 | | 2 | 27 | r | | 3 | 18 | S | | 4 | 10 | 9.02 | | 5 | 3 | 3.61 | | 6 | 1 | 1.20 | | 7 | 0 | 0.34 | | ≥8 | 1 | 0.12 | | a. | Find values for r and s. | (2) | |----|--|-------------| | b. | Using a 5% significance level, test whether or not this Poisson model is suitable. State your hypotheses | | | | clearly. | (7) | <u>1a.</u> | r = 27.07 | A1 | |-----------|-----------| | s = 18.04 | A1 | 1b. | H ₀ : A Poisson model Po(2) is a suitable model. | Both | |---|-----------| | H ₁ : A Poisson model Po(2) is not a suitable model. | B1 | | Amalgamate data | M1 | | $\sum \frac{(O-E)^2}{E} = 3.28 \text{ (awrt)}$ | M1A1 | | v = 6 - 1 = 5 | B1 | | χ_5^2 (5 %) = 11.070 (follow through their degrees of freedom) | B1 | | 3.25 < 11.070 | | | There is insufficient evidence to reject H ₀ , | A1 | | Po(2) is a suitable model. | | # Topic: Chi-Squared Tests and Contingency Tables (3) Chapter Reference: Further Statistics 1, Chapter 6 10 minutes 1. Year 12 students at Coron Academy choose to participate in one of four sports during the Spring term, The students' choices are summarised in the table. | | Squash | Badminton | Archery | Hockey | Total | |--------|--------|-----------|---------|--------|-------| | Male | 5 | 16 | 30 | 19 | 70 | | Female | 4 | 20 | 33 | 53 | 110 | | Total | 9 | 36 | 63 | 72 | 180 | | gender. | (10) | |---------|------| V \ | 1. | H ₀ : Choice indep | pendent of gender | | | | B1 | | | | |--|-------------------------|-----------|---------|--------------|---------------|--|--|--| | | Squash | Badminton | Archery | Hockey | | | | | | Male | 5/3.5 | 16/14 | 30/24.5 | 19/28 | M1 | | | | | Female | 4/3.5 | 20/22 | 33/38.5 | 53/44 | | | | | | Combine Squash | n and Badminton | | | | M1 | | | | | Squash & Archery Hockey Badminton | | | | | | | | | | Male | 21/17.5 | 30/2 | 4.5 | 19/28 |

 M1 | | | | | Female | 24/27.5 | 33/3 | 8.5 | 53/44 | | | | | | | Squash &
Badminton | Arch | nery | Hockey | | | | | | Male | Badminton 0.7000 | 1.23 | - | 2.8928 | M1 | | | | | | 0.7000 | 1.2. | 947 | 2.0920 | | | | | | Female | 0.4455 | 0.78 | 357 | 1.8409 | | | | | | $\chi_{\rm calc}^2 = 7.90$ | | | | (7.8 to 7.9) | A1 | | | | | v=2 | | | | | B1 | | | | | $\frac{\chi^2_{5\%}(2) = 5.991}{\chi^2_{5\%}(2) = 5.991}$ | | | | | B1 | | | | | Reject H ₀ Sufficient evidence, at the 1% level of significance, to support an association between the choice of sport and gender | | | | | | | | | ## Topic: Chi-Squared Tests and Geometric Distribution (4) Chapter Reference: Further Statistics 1, Chapter 6 10 minutes 1. The following table shows observed values for what is thought to be a geometric distribution with p = 0.5. | x | 1 | 2 | 3 | 4 | 5 | 6 | Total | |--------------------------|----|----|----|---|---|---|-------| | Observed frequency O_x | 56 | 27 | 13 | 3 | 0 | 1 | 100 | | Calculate the expected frequencies and, using a 5% significance level, conduct a good-of-fit test. | (6) | |--|-----| 1. | H ₀ : $X \sim \text{Geo}(0.5)$ is H ₁ : $X \sim \text{Geo}(0.5)$ is | | lel | | | B1 | |---|--------------------|------|------|-------|----| | 11]. A GCO(0.5) 15 | not a suitable moe | | | | | | x | 1 | 2 | ≥3 | Total | | | Expected frequency E_x | 50 | 25 | 25 | 100 | M1 | | | | | | | _ | | <i>x</i> | 1 | 2 | ≥3 | Total | 41 | | $\frac{(\boldsymbol{O}_{x}-\boldsymbol{E}_{x})^{2}}{\boldsymbol{E}_{x}}$ | 0.72 | 0.16 | 2.56 | 3.44 | M1 | | $X^2 = 3.44$ | | | | | | | v = 3 - 1 = 2 | | | | | B1 | | $\chi_2^2(5\%) = 5.991$ | | | | | B1 | | Since $5.991 > 3.44$ there is insufficient evidence to reject H ₀ at the 5% level $X \sim \text{Geo}(0.5)$ is a suitable model for the data. | | | | | A1 | ## Topic: Chi-Squared Tests and Geometric Distribution (5) Chapter Reference: Further Statistics 1, Chapter 6 10 minutes 1. Eli is practising the water bottle flip for a YouTube video. He records how many attempts he needs to correctly flip the water bottle on 100 separate occasions. | Attempts | 1 | 2 | 3 | 4 | 5 | Total | |-----------|----|----|----|----|----|-------| | Frequency | 34 | 22 | 14 | 18 | 12 | 100 | | a. | Using the observed frequencies, find an estimate for p to 3.d.p. | (2) | |----|---|-----------------| | b. | Conduct a goodness-of-fit test at the 2.5% significance level, and say whether a geometric ran- | dom variable is | | | a good model for the data. | (6) | - | 417 | | ia. | | |---|-----------| | $p = \frac{1}{\bar{x}}$ $\bar{x} = \frac{\sum fx}{\sum f} = \frac{(34 \times 1) + (22 \times 2) + (14 \times 3) + (18 \times 4) + (12 \times 5)}{100} = 2.52$ | M1 | | $p = \frac{1}{2.52} \approx 0.397$ | A1 | | H ₀ : A geometric | | | | | | | B1 | |---|-----------------|----------------|---------|-------|-------------|---------------------|-----------| | H ₁ : A geometric | distribution is | not a suitable | e model | | | | D1 | | x | 1 | 2 | 3 | 4 | ≥5 | Total | | | Expected frequency E_i | 39.7 | 23.9 | 14.4 | 8.7 | 13.3 | 100 | M1 | | | | | Ι 2 | | | | | | $\frac{x}{(O_i - E_i)^2}$ | 0.818 | 0.151 | 0.011 | 9.941 | ≥5
0.127 | Total 11.048 | M1 | | $\frac{2^2}{1000} = 11.048$
= 5 - 1 = 4 | | l | | | l | | B1 | | $\frac{v - 3 - 1 - 4}{\chi_4^2(2.5\%)} = 11.143$ | | | | | | B1 | | | Since $11.143 > 11.048$ there is insufficient evidence to reject H ₀ at the 2.5% level. Geometric distribution is a suitable model for the data. | | | | | | A1 | |