A-Level Starter Activity

Topic: Straight Lines

Chapter Reference: Pure 1, Chapter 5

minutes

1. The straight line L1 passes through the points (-1, 3) and (11, 12).	
a. Find an equation for L1 in the form $ax + by + c = 0$, where a, b and c are integers.	(4)
The line L2 has equation $3y + 4x - 30 = 0$.	
b. Find the coordinates of the point of intersection of L1 and L2.	(3)
•	, ,

1a.

Gradient = $\frac{12-3}{111} = \frac{9}{12} = \frac{3}{4}$	M1
Equation of L1: $y - 3 = \frac{3}{4}(x - 1)$	M1
4y - 12 = 3x + 3	M1
3x - 4y + 15 = 0	M1

1b.

10.	
L1: $3x - 4y + 15 = 0$ (x3)	
L2: $3y + 4x - 30 = 0$ (x4)	
	M1
L1: $9x - 12y + 45 = 0$	
L2: $12y + 16x - 120 = 0$	
25x - 75 = 0	3.41
x = 3	M1
When $x = 3$,	
3(3) - 4y + 15 = 0	N. 4.1
4y = 24	M1
y = 6	
y = 6	

Topic: Equations of Lines

Chapter Reference: Pure 1, Chapter 5

minutes

1. The point A has coordinates (-1, 0) and the point B has coordinates $(7, 2)$	
a. Find the equation of the perpendicular bisector of AB, giving your answer in the form $y = mx + c$.	(4)
b. A point C on the perpendicular bisector has coordinates (p, q) . The distance OC is 2 units, where O is the or Write down two equations involving p and q and hence find the coordinates of the possible positions of C .	rigi: (5)
	—

1a.

Gradient $AB = \frac{6-2}{-1-7} = \frac{4}{-8} = -\frac{1}{2}$	M1
Gradient of bisector = 2	M1
Midpoint M: $(\frac{-1+7}{2}, \frac{6+2}{2}) = (3, 4)$	M1
Equation of perpendicular bisector is:	
$\begin{vmatrix} y - 4 = 2(x - 3) \\ y - 4 = 2x - 6 \end{vmatrix}$	M1
y-4=2x-6	IVII
y = 2x - 2	

1b.

10.	
x = p, y = q	M1
q = 2p - 2	1,11
$q = 2p - 2$ $OC = 2,$ $OC^2 = 4$	
$OC^2 = 4$	M1
$p^2 + q^2 = 4$	
$p^{2} + q^{2} = 4$ $p^{2} + (2p - 2)^{2} = 4$	
$p^2 + 4p^2 - 8p + 4 = 4$	M1
$5p^2 - 8p = 0$	IVII
p(5p-8)=0	
p(5p-8) = 0 $p = 0$	M1
q = -2	IVII
5p - 8 = 0	
$p = \frac{8}{\pi}$	M1
1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1411
$q = -2$ $5p - 8 = 0$ $p = \frac{8}{5}$ $q = \frac{6}{5}$	
$(0, -2)$ and $(\frac{8}{5}, \frac{6}{5})$	
L 'S 5'	1

Topic: Equation of a Line

Chapter Reference: Pure 1, Chapter 5

g minutes

1. A curve has equation $y = x^2 - 4x + 4$ and a line has equation $y = mx$, where m is a constant.
a. For the case where $m = 1$, the curve and the line intersect at the points A and B . Find the coordinates of the m point of AB .
b. Find the non-zero value of <i>m</i> for which the line is a tangent to the curve, and find the coordinates of the point
where the tangent touches the curve.

]	la	

$y = x^2 - 4x + 4$ $y = x$ $x = x^2 - 4x + 4$	M1
$x^2 - 5x + 4 = 0$ (x - 4)(x - 1) = 0	M1
(x-4)(x-1) = 0 x = 4, x = 1 y = 4, y = 1	M1
Therefore, midpoint AB: $(\frac{1+4}{2}, \frac{1+4}{2})$ = $(\frac{5}{2}, \frac{5}{2})$	M1

1b

$mx = x^2 - 4x + 4$ $x^2 - (4 + m)x + 4 = 0$ As $b^2 - 4ac = 0$	M1 M1 M1
$mx = x^2 - 4x + 4$ $x^2 - (4 + m)x + 4 = 0$ As $b^2 - 4ac = 0$	M1
$x^{2} - (4 + m)x + 4 = 0$ As $b^{2} - 4ac = 0$	
$As b^2 - 4ac = 0$	
	N / 1
$\Gamma(A + 1)^2 (A)(1)(A) = 0$	
$[-(4+m)]^2 - (4)(1)(4) = 0$	IVII
$(4+m)^2=16$	
$4+m=\pm 4$	M1
$m = -4 \pm 4$	IVII
Therefore, $m = 0$, $m = -8$	
When $m = -8$	
$x^2 + 4x + 4 = 0$	
$x = -\frac{4}{2} = -2$	M1
Therefore $y = 16$	

A-Level Starter Activity

Topic: Modelling with Straight Lines

Chapter Reference: Pure 1, Chapter 5

5 minutes

(1)

(1)

(1)

1.Below shows a graph of the number of downloads against time in days. At 146 days, downloads are at 1000.

- a. Find equations in the form n = kd (give k to the nearest whole number).
- b. Interpret the meaning of k.
- c. Based on the model, how long will it be until there are 10,000 downloads.

Use the exact value of k and assume there are 365 days per year.

1a.	
n = 7d	M1
1b.	
7 downloads per day	M1
-	
1c.	
1460 days, 4 years, 15 th May 2021.	M1

