

Topic: Roots of Polynomials (1)

Chapter Reference: Core Pure 1, Chapter 4

4	CD1	4	. •
Ι.	The	quadratic	equation

$x^2 + px + q = 0$	
in which the coefficients p and q are real, has a complex root $\sqrt{5} - i$.	
a. Write down the other root of the equation	(1)
b. Find the sum and product of the two roots of the equation.	(3)
c. Hence state the values of p and q .	(2)

1a.	
$\sqrt{5} + i$	B1
<u>1</u> b.	
Sum of roots is $2\sqrt{5}$	B1
Product is 6	M1A1
1c.	
2/5	B1
$p=-2\sqrt{5}$, $q=6$	B1

Topic: Roots of Polynomials (2)

Chapter Reference: Core Pure 1, Chapter 4

1. The cubic equation $3x^3 - 9x^2 + 6x + 2 = 0$ has roots α , β and γ . Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.	(3)
2. The cubic equation $3z^3 + pz^2 + 17z + q = 0$, where p and q are real, has a root $\alpha = 1 + 2i$.	
a. Write down the value of another non-real root, β , of this equation.	(1)
b. Find the value of the third root, γ , of this equation.	(3)
c. Find the values of p and q .	(3)
- Land the values of p and q.	

1.

1.	
$\alpha + \beta + \gamma = 3$	B1
$\alpha\beta + \beta\gamma + \gamma\alpha = 2$	B 1
$\alpha \beta \gamma = -\frac{2}{3}$	B 1

2a.

1 2'	
$\lfloor 1 - 2l \rfloor$	B1

2b.

$ \begin{array}{c} \Delta \alpha \beta = \frac{1}{3} \\ \alpha \beta + \beta \gamma + \gamma \alpha = \frac{17}{3} \\ \Rightarrow \gamma = \frac{1}{3} \end{array} $ B1 M1 A1	$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{17}{3}$	M1
---	---	----

2c.

26.	
$\alpha + \beta + \gamma = \frac{-p}{3}$, $\alpha \beta \gamma = \frac{-q}{3}$	M 1
p = -7	A1
q = -5	A1

Topic: Roots of Polynomials (3)

Chapter Reference: Core Pure 1, Chapter 4

1.	The	ea	uation
•	1110	-	aution

$x^4 - 6x^3 - 73x^2 + kx + m = 0$	
has two positive roots α, β and two negative roots γ, δ . It is given that $\alpha\beta = \gamma\delta = 4$.	
a. Find the values of the constant <i>k</i> and <i>m</i> .	(5)
	(0)
b. Show that $(\alpha + \beta)(\gamma + \delta) = -81$	(4)

1a.

ia.	
$\alpha + \beta + \gamma + \delta = 6$	B1
$k = -(\beta \gamma \delta + \alpha \gamma \delta + \alpha \beta \delta + \alpha \beta \gamma)$	M1
$=-4(\beta+\alpha+\delta+\gamma)$	M1
=-24	A1
$m = \alpha \beta \gamma \delta = 16$	B 1

1b.

$ \begin{bmatrix} (\alpha + \beta)(\gamma + \delta) = \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta \\ \sum \alpha\beta - \alpha\beta - \gamma\delta \\ = -73 - 4 - 4 \end{bmatrix} $ A	B1 M1 A1 A1
---	----------------------

Topic: Roots of Polynomials (4)

Chapter Reference: Core Pure 1, Chapter 4

1.	. Show that $(\alpha\beta + \beta\gamma + \gamma\alpha)^2 \equiv \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma)$.	(3)
2.	. It is given that α , β and γ are the roots of the cubic equation $x^3 + px^2 - 4x + 3 = 0$, where p is a	constant.
	Find the value of $\frac{1}{a^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$ in terms of p.	(5)
_		

1.

Attempt at complete expansion	M1
Obtain correct unsimplified answer	A1
Obtain given answer correctly	A1

2.

$\sum \alpha = -p, \Sigma \alpha \beta = -4, \alpha \beta \gamma = -3$ $\underline{16 - 6p}$	B1 M1 A1 M1
9	A1

Topic: Roots of Polynomials (5)

Chapter Reference: Core Pure 1, Chapter 4

1. The cubic equation $2u^3 = 0u^2 + 6u + 2 = 0$ has made as $0 = 1$.	
1. The cubic equation $3x^3 - 9x^2 + 6x + 2 = 0$ has root α , β and γ .	
a. Write down the values of $\alpha + \beta + \gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$.	(2)
-	
	(2)
b. Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	(2)
1	
c. Use the substitution $x = \frac{1}{u}$ to find a cubic equation in u with integer coefficients.	(2)
d. Use your answer to part (c) to find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.	(2)

<u>1</u> a.	
$\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$	B1
	B1

1b.	
$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$	M1
= 9 - 4 = 5	A1

<u>1c.</u>	
$\frac{3}{3} - \frac{9}{3} + \frac{6}{1} + \frac{1}{2} = 0$	
$\frac{u^3}{u^3} - \frac{u^2}{u^2} + \frac{u}{u} + 2 = 0$ $2u^3 + 6u^2 - 9u + 3 = 0$	M1
$2u^3 + 6u^2 - 9u + 3 = 0$	M1

1d.	
	M1
$\alpha + \beta + \gamma = -3$	A1

