Topic: Roots of Polynomials (1) Chapter Reference: Core Pure 1, Chapter 4 | 4 | CD1 | 4 | . • | |----|-----|-----------|----------| | Ι. | The | quadratic | equation | | $x^2 + px + q = 0$ | | |---|-----| | in which the coefficients p and q are real, has a complex root $\sqrt{5} - i$. | | | a. Write down the other root of the equation | (1) | | | | | | | | | | | | | | | | | b. Find the sum and product of the two roots of the equation. | (3) | | | | | | | | | | | | | | | | | c. Hence state the values of p and q . | (2) | | | | | | | | | | | | | | 1a. | | |-----------------------------|------| | $\sqrt{5} + i$ | B1 | | | | | <u>1</u> b. | | | Sum of roots is $2\sqrt{5}$ | B1 | | Product is 6 | M1A1 | | | | | 1c. | | | 2/5 | B1 | | $p=-2\sqrt{5}$, $q=6$ | B1 | # Topic: Roots of Polynomials (2) Chapter Reference: Core Pure 1, Chapter 4 | 1. The cubic equation $3x^3 - 9x^2 + 6x + 2 = 0$ has roots α , β and γ . Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. | (3) | |--|-----| | | | | | | | | | | | | | 2. The cubic equation $3z^3 + pz^2 + 17z + q = 0$, where p and q are real, has a root $\alpha = 1 + 2i$. | | | a. Write down the value of another non-real root, β , of this equation. | (1) | | | | | | | | b. Find the value of the third root, γ , of this equation. | (3) | | | | | | | | | | | | | | c. Find the values of p and q . | (3) | | - Land the values of p and q. | | | | | | | | | | | | | | 1. | 1. | | |--|------------| | $\alpha + \beta + \gamma = 3$ | B1 | | $\alpha\beta + \beta\gamma + \gamma\alpha = 2$ | B 1 | | $\alpha \beta \gamma = -\frac{2}{3}$ | B 1 | 2a. | 1 2' | | |--------------------------|----| | $\lfloor 1 - 2l \rfloor$ | B1 | 2b. | $ \begin{array}{c} \Delta \alpha \beta = \frac{1}{3} \\ \alpha \beta + \beta \gamma + \gamma \alpha = \frac{17}{3} \\ \Rightarrow \gamma = \frac{1}{3} \end{array} $ B1 M1 A1 | $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{17}{3}$ | M1 | |---|---|----| |---|---|----| 2c. | 26. | | |---|------------| | $\alpha + \beta + \gamma = \frac{-p}{3}$, $\alpha \beta \gamma = \frac{-q}{3}$ | M 1 | | p = -7 | A1 | | q = -5 | A1 | # Topic: Roots of Polynomials (3) Chapter Reference: Core Pure 1, Chapter 4 | 1. | The | ea | uation | |----|------|----|--------| | • | 1110 | - | aution | | $x^4 - 6x^3 - 73x^2 + kx + m = 0$ | | |--|-----| | has two positive roots α, β and two negative roots γ, δ . It is given that $\alpha\beta = \gamma\delta = 4$. | | | a. Find the values of the constant <i>k</i> and <i>m</i> . | (5) | | | (0) | b. Show that $(\alpha + \beta)(\gamma + \delta) = -81$ | (4) | 1a. | ia. | | |---|------------| | $\alpha + \beta + \gamma + \delta = 6$ | B1 | | $k = -(\beta \gamma \delta + \alpha \gamma \delta + \alpha \beta \delta + \alpha \beta \gamma)$ | M1 | | $=-4(\beta+\alpha+\delta+\gamma)$ | M1 | | =-24 | A1 | | $m = \alpha \beta \gamma \delta = 16$ | B 1 | 1b. | $ \begin{bmatrix} (\alpha + \beta)(\gamma + \delta) = \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta \\ \sum \alpha\beta - \alpha\beta - \gamma\delta \\ = -73 - 4 - 4 \end{bmatrix} $ A | B1
M1
A1
A1 | |---|----------------------| |---|----------------------| # Topic: Roots of Polynomials (4) Chapter Reference: Core Pure 1, Chapter 4 | 1. | . Show that $(\alpha\beta + \beta\gamma + \gamma\alpha)^2 \equiv \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 + 2\alpha\beta\gamma(\alpha + \beta + \gamma)$. | (3) | |----|--|-----------| 2. | . It is given that α , β and γ are the roots of the cubic equation $x^3 + px^2 - 4x + 3 = 0$, where p is a | constant. | | | Find the value of $\frac{1}{a^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$ in terms of p. | (5) | | | | | | | | | | _ | | | | | | | | | | | | | | | 1. | Attempt at complete expansion | M1 | |--------------------------------------|-----------| | Obtain correct unsimplified answer | A1 | | Obtain given answer correctly | A1 | 2. | $\sum \alpha = -p, \Sigma \alpha \beta = -4, \alpha \beta \gamma = -3$ $\underline{16 - 6p}$ | B1
M1
A1
M1 | |--|----------------------| | 9 | A1 | # Topic: Roots of Polynomials (5) Chapter Reference: Core Pure 1, Chapter 4 | 1. The cubic equation $2u^3 = 0u^2 + 6u + 2 = 0$ has made as $0 = 1$. | | |---|-----| | 1. The cubic equation $3x^3 - 9x^2 + 6x + 2 = 0$ has root α , β and γ . | | | a. Write down the values of $\alpha + \beta + \gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$. | (2) | | | | | | | | - | | | | | | | | | | (2) | | b. Find the value of $\alpha^2 + \beta^2 + \gamma^2$. | (2) | | | | | | | | | | | | | | | | | 1 | | | c. Use the substitution $x = \frac{1}{u}$ to find a cubic equation in u with integer coefficients. | (2) | d. Use your answer to part (c) to find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. | (2) | | | | | | | | | | | | | | <u>1</u> a. | | |---|-----------| | $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ | B1 | | | B1 | | 1b. | | |---|-----------| | $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ | M1 | | = 9 - 4 = 5 | A1 | | <u>1c.</u> | | |--|-----------| | $\frac{3}{3} - \frac{9}{3} + \frac{6}{1} + \frac{1}{2} = 0$ | | | $\frac{u^3}{u^3} - \frac{u^2}{u^2} + \frac{u}{u} + 2 = 0$ $2u^3 + 6u^2 - 9u + 3 = 0$ | M1 | | $2u^3 + 6u^2 - 9u + 3 = 0$ | M1 | | | | | 1d. | | |--------------------------------|-----------| | | M1 | | $\alpha + \beta + \gamma = -3$ | A1 |