

Topic: Direct Impact and Newton's Law of Restitution (1)

Chapter Reference: Further Mechanics 1, Chapter 4

1.	A particle P of mass $3m$ is moving in a straight line withs speed $2u$ on a smooth horizontal table. It collides directly with another particle Q of mass $2m$ which is moving with speed u in the opposite direction to P . The		
	coeffi	cient of restitution between P and Q is e .	
	a.	Show that the speed of Q immediately after the collision is $\frac{1}{5}(9e+4)u$.	(5)
	b.	The speed of P immediately after the collision is $\frac{1}{2}u$. Show that $e = \frac{1}{4}$.	(4)

1a.

Before $\frac{2u}{p}$ $\frac{u}{2m}$ Q After $\frac{2u}{y}$ Correct use of NEL	M1
y - x = e(2u + u) o.e.	A1
CLM (\rightarrow): $3m(2u) + 2m(-u) = 3m(x) + 2m(y)$ ($\Rightarrow 4u = 3x + 2y$)	B1
Hence $x = y - 3eu$, $4u = 3(y - 3eu) + 2y$, $(u(9e + 4) = 5y)$	M1
Hence, speed of $Q = \frac{1}{5}(9e+4)u$ AG	A1

1b. Either

10. Ettiel	
$x = y - 3eu = \frac{1}{5}(9e + 4)u - 3eu$	M1
Hence, speed $P = \frac{1}{5}(4-6e)u = \frac{2u}{5}(2-3e)$ o.e.	A1
$x = \frac{1}{2}u = \frac{2u}{5}(2 - 3e) \Rightarrow 5u = 8u - 12eu, \Rightarrow 12e = 3$ & solve for e	M1
gives, $e = \frac{3}{12} \Rightarrow e = \frac{1}{4}$ AG	A1

Or

Using NEL correctly with given speeds of P and Q	M1
$3eu = \frac{1}{5}(9e+4)u - \frac{1}{2}u$	A1
$3eu = \frac{9}{5}eu + \frac{4}{5}u - \frac{1}{2}u$, $3e - \frac{9}{5}e = \frac{4}{5} - \frac{1}{2}$ & solve for e	M1
$\frac{6}{5}e = \frac{3}{10} \Rightarrow e = \frac{15}{60} \Rightarrow e = \frac{1}{4}$.	A1

Topic: Direct Collision with a Smooth Plane (2)

Chapter Reference: Further Mechanics 1, Chapter 4

1.	A small sphere of mass 0.2kg is projected vertically downwards with speed 21 m s ⁻¹ from	a point at a height		
	of 40 m above horizontal ground. It hits the ground and rebounds vertically upwards, com-	ning to		
	instantaneous rest at its initial point of projection. Ignoring air resistance, calculate			
	a. the coefficient of restitution between the sphere and the ground,	(6)		
	b. the magnitude of the impulse which the ground exerts on the sphere.	(2)		
				
		-		
		-		

1a.

$x^2 = 21^2 + 2x40x9.8$	M1
x = 35	A1
$0 = y^2 - 2x40x9.8$	M1
y = 28 may be implied	A1
e = 28/35	M1
e = 0.8 aef	A1

1b.

0.2x280.2x35	must be double negative	M1
I = 12.6		A1

Topic: Loss of Kinetic Energy (3)

Chapter Reference: Further Mechanics 1, Chapter 4

Two spheres of the same radius with masses 2 kg and 3 kg are moving directly towards each other on a		
energy lost is 81 J. Calculate the speed and direction of motion of each sphere after the collision.	(12)	
	smooth horizontal plane with speeds 8 m s ⁻¹ and 4 m s ⁻¹ respectively. The spheres collide and the kinetic	

1.	
16 - 12 = 2x + 3y	M1
4 = 2x + 3y aef	A1
$\frac{1}{2}.2(8)^2 + \frac{1}{2}.3(4)^2 \text{ or } \frac{1}{2}.2x^2 + \frac{1}{2}3y^2 \text{ or } \pm \frac{1}{2}.2(8^2 - x^2) \text{ or } \pm \frac{1}{2}.3(4^2 - y^2)$	B1
$\frac{1}{2}.2(8)^2 + \frac{1}{2}.3(4)^2 - \frac{1}{2}.2x^2 - \frac{1}{2}3y^2 = 81$	M1
$2x^2 + 3y^2 = 14$ aef	A1
Attempt to eliminate x or y from a linear and a quadratic equation	M1
$15y^2 - 24y - 12 = 0$ or $10x^2 - 16x - 26 = 0$ aef	A1
Attempt to solve a three term quadratic	M1
x = -1 (or $x = 2.6$)	A1
y = 2 (or $y = -2/5$)	A1
x = -1 and $y = 2$ only	A1
speeds 1, 2 away from each other	A1

Topic: Successive Direct Impacts (4)

Chapter Reference: Further Mechanics 1, Chapter 4

1.	A sma	ll ball of mass 0.5 kg is held at a height of 3.136 m above a horizontal floor. The ball is released	from
	rest an	d rebounds from the floor. The coefficient of restitution between the ball and floor is e . The spee	d of
	the ba	Il in terms of e immediately after the impact is $7.84e$. The ball continues to bounce until it eventually	ally
	comes	to rest.	
	a.	Show that the time between the first bounce and the second bounce is 1.6e.	(2)
	b.	Write down, in terms of e , the time between	
		i. the second bounce and the third bounce,	
		ii. the third bounces and the fourth bounce.	(2)
	c.	Given that the time from the ball being released until it comes to rest is 5 s, find the value of e .	(5)
			4

1a

-7.84e = 7.84e - gt	Uses a complete method to find t.	M1
t = 1.6e		A2

<u>1</u>b.

(a)	$t_2 = 1.6e^2$	B1
(b)	$t_3 = 1.6e^3$	B1

1c.

Time to first bounce is 0.8 s	B1
Identify total time is sum of a GP in e Indication of the sum of at least to term in e ⁴	B1
Equate 3.4 or 4.2 or 5 or 5.8 with attempt at use of formula for sum to infinity of a GP.	M1
$\frac{1.6e}{1-e} = 4.2$	A1
e = 0.724 Allow 21/29	A1

Topic: Successive Direct Impacts (5)

Chapter Reference: Further Mechanics 1, Chapter 4

1.	Three	smooth spheres A , B and C , of equal radius and of masses m kg, $2m$ kg and $3m$ kg respectively.	ectively, lie in a
	straigh	at line and are free to move on a smooth horizontal table. Sphere A is moving with speed	d 5 m s ⁻¹ when i
	collide	es directly with sphere B which is stationary. As a result of the collision B starts to move	e with speed
	2ms ⁻¹ .		
	a.	Find the coefficient of restitution between A and B .	(4)
	b.	Find, in terms of m , the magnitude of the impulse that A exerts on B and state the direction A exerts on B and B are the direction B are the direction B and B are the direction B and B are the	etion of this
		impulse.	(2)
	c.	Sphere B subsequently collides with sphere C which is stationary. As a result of this in	npact B and C
		coalesce. Show that there will be another collision.	(3)

1a.

1α.		
5m = mu + 4m cons. of mom.	M1	
u = 1	A1	
e = (2-1)/5	M1	
$e = \frac{1}{5}$	A1	

<u>1b.</u>

I = 4m	B1
→ to the right	B1

1c.

4m = 5mv	M1
$v = \frac{4}{5}$	A1
$\frac{4}{5} < 1$	B1

