

Topic: Sums of Squares and Cubes (1)

Chapter Reference: Core Pure 1, Chapter 3

Find $\sum_{r=1}^{n} r(r+1)(r-2)$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	(6)
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	
Find $\sum_{r=1}^{n} (2r-1)^2$, expressing your answer in a fully factorised form.	

1.

Express as sum of three series	M1
Use standard results	M1
$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1) - n(n+1)$	A1
Attempt to factorise	M1
Obtain at least factor of n(n+1)	A1
$\frac{1}{12}n(n+1)(n+2)(3n-7)$	A1

2. Either

Express as a sum of 3 terms	M1
Use standard sum results	M1
$\frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$	A1
Attempt to factorise	M1
Obtain at least factor of n and a quadratic	A1
$\frac{1}{3}n(2n-1)(2n+1)$	A1

Or

$\sum_{r=1}^{2n} r^2 - 4\sum_{r=1}^{n} r^2$	M1
Use standard result	M1
$\frac{1}{6} \times 2n(2n+1)(4n+1) - 4 \times \frac{1}{6}n(n+1)(2n+1)$	A1
Attempt to factorise	M1
Obtain at least factor of n	A1
$\frac{1}{3}n(2n-1)(2n+1)$	A1

Topic: Sums of Squares and Cubes (2)

Chapter Reference: Core Pure 1, Chapter 3

1.	(a)	(i) Expand $(2r-1)^2$.	(1)
		(ii) Hence show that $\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3}n(4n^2-1)$	(5)
	(b)	Hence find the sum of the squares of the odd numbers between 100 and 200.	(4)
			A

<u>1</u>ai.

$(2r-1)^2 = 4r^2 - 4r + 1$	B1
----------------------------	----

<u>1</u>aii.

$\sum (2r-1)^2 = 4\sum r^2 - 4\sum r + \sum 1$	M1
$\dots = \frac{4}{3}n^3 - \frac{4}{3}n + \sum 1$	M1
3 3 2	A1
$\sum 1 = n$	B1
Result convincingly shown	A1

1b.

Sum = f(100) - f(50)	M1
Sum = 1 (100) = 1 (50)	A1
= 1 166 650	A2

Topic: Sums of Squares and Cubes (3)

Chapter Reference: Core Pure 1, Chapter 3

1. Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that, for all positive integers	n, (6)
$\sum_{r=1}^{n} (6r^2 + 2r + 1) = n(2n^2 + 4n + 3).$	
	······································
2. Show that $\sum_{r=1}^{n} (r^2 - r) = kn(n+1)(n-1)$ where k is a rational number.	(4)
	······································

1.

1.	
$\Sigma(r^2 - r) = \Sigma r^2 - \Sigma r$	M1
At least one linear factor found	M1
$\Sigma(r^2 - r) = \frac{1}{6}n(n+1)(2n+1-3)$	M1
= $\frac{1}{3}n(n+1)(n-1)$	A1

2.

$6\Sigma r^2 + 2\Sigma r + \Sigma 1$	M1
$6\Sigma r^2 = n(n+1)(2n+1)$	A1
$2\Sigma r = n(n+1)$	A1
$\Sigma 1 = n$	A1
$n(2n^2+4n+3)$	M1
Obtain given answer correctly	A1

Topic: Sums of Squares and Cubes (4)

Chapter Reference: Core Pure 1, Chapter 3

1.	Use the standard results for $\sum_{r=1}^{n} r$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n ,	(6)
	$\sum_{r=1}^{n} (8r^3 - 6r^2 + 2r) = 2n^3(n+1).$	
2	Use the standard results for $\sum_{r=1}^{n} r^3$ and $\sum_{r=1}^{n} r^2$ to show that, for all positive integers n ,	(5)
۷٠		
	$\sum_{r=1}^{n} (r^3 + r^2) = \frac{1}{12} n(n+1)(n+2)(3n+1).$	

1.

1.	
$8\Sigma r^3 - 6\Sigma r^2 + 2\Sigma r$	M1
$8\Sigma r^3 = 2n^2(n+1)^2$	A1
$6\Sigma r^2 = n(n+1)(2n+1)$	A1
$2\Sigma r = n(n+1)$	A1
$2n^{3}(n+1)$	M1
Obtain given answer correctly	A1

2.

$\sum r^3 + \sum r^2$	M1
$\Sigma r^2 = \frac{1}{6} n(n+1)(2n+1)$	A1
$\sum r^3 = \frac{1}{4} n^2 (n+1)^2$	A1
$\frac{1}{12}n(n+1)(n+2)(3n+1)$	M1
Obtain given answer correctly or complete verification	A1

Topic: Sums of Squares and Cubes (5)

Chapter Reference: Core Pure 1, Chapter 3

1. Find $\sum_{r=1}^{n} (3r^2 - 3r + 2)$, expressing your answer in a fully factorised form.	(7)
2. Evaluate $\sum_{r=101}^{250} r^3$.	(3)
2. Evaluate $\Delta r = 1017$	

1.

Express as sum of 3 series	M1
Use standard series results, at least 1 correct	M1
Two terms correct	A1
$\frac{1}{2}n(n+1)(2n+1) - \frac{3}{2}n(n+1) + 2n$	A1
Obtain factor of <i>n</i>	M1
$n(n^2 + 1)$ Allow A1 for $\frac{1}{2(2n^2 + 2)}$	A2

2.

State correct value of S_{250} or S_{100}	B1
Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99})	M1
984390625 - 25502500 = 958888125	A1

