

Topic: Geometric Distribution (1)

Chapter Reference: Further Statistics 1, Chapter 3

1.	Andrea practises shots at a goal. For each shot the probability of her scoring a goal is $\frac{2}{5}$. Each shot is	
	independent of other shots.	
	Find the probability that she scores her first goal	
a.	On her 5 th shot,	(2)
	Before her 5 th shot.	(3)
2.	The random variable X has the distribution $Geo(0.2)$. Find	
a.	P(X = 3),	(2)
b.	$P(3 \le X \le 5).$	(3)

1	
- 1	2
- 1	а.

ia.		
$(\frac{3}{5})^2 \times \frac{2}{5}$	M1	
$= 0.0518 \text{ (3sfs) or } \frac{162}{3125} $ (oe)	A1	

1b.

$(\frac{3}{5})^4$	M1
$1-(\frac{3}{5})^4$	M1
$= 0.870 (3 \text{ sfs}) \text{ or } \frac{544}{625} \tag{oe}$	A1

2a.

$0.8^2 \times 0.2$	M1
$=\frac{16}{125}$ or 0.128	A1

2b.

$0.8^2 \times 0.2 + 0.8^3 \times 0.2 + 0.8^4 \times 0.2$	M2
1 term omitted or wrong or extra	(M1)
$= \frac{976}{3125} \text{ or } 0.312 \text{ (3 sfs)}$	A1

Topic: Mean and Variance for Geometric Distribution (2)

Chapter Reference: Further Statistics 1, Chapter 3

1.	A random variable T has the distribution $Geo(\frac{1}{5})$. Find	
a.	P(T > 4),	(2)
b.	$\mathrm{E}(T)$.	(1)
2.	Danny records <i>X</i> , the number of attempts it takes him to throw a basketball into a hoop.	
Gi	ven that $P(X = 2) = 0.16$ and that $p < 0.5$, find:	
a.	p, the probability that Danny dunks the basketball on each single attempt,	(3)
b.	The expected number of attempts Danny tries,	(1)
c.	The variance of X .	(1)

1a.		
$(\frac{4}{5})^4$ alone or $1 - (\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + (\frac{4}{5})^2 \times \frac{1}{5} + (\frac{4}{5})^3 \times \frac{1}{5})$		M1
$=\frac{256}{625}$ or 0.410 (3 sfs)	(allow 0.41)	A1

1b.	
$1 \div \frac{1}{5}$	B1
=5	

Za. P(X = 2) = p(1-p) = 0.16 $p^{2}-p + 0.16 = 0$ $p = \frac{1 \pm \sqrt{(-1)^{2} - 4(0.16)}}{2} = \frac{1 \pm \sqrt{0.36}}{2} = \frac{1 \pm 0.6}{2}$ p = 0.2 or 0.8As p < 0.5, solution is p = 0.2M1

E(X) = $\frac{1}{0.2}$ = 5 B1

Var(X) = $\frac{1-0.2}{0.2^2} = \frac{0.8}{0.04} = 20$ B1

Topic: Negative Binomial Distribution (3)

Chapter Reference: Further Statistics 1, Chapter 3

1.	When Stéphane plays chess against his favourite computer program, he wins with probability 0.60, loses w	/ith
	probability 0.10, and 30% of the games result is a draw. Assume independence.	
	Find the probability that Stéphane's fifth win happens when he plays his eighth game.	(2)
2.	Customers come into a store. 30% of them make a purchase.	
	Calculate the probability that the second purchase is made by the sixth customer.	(2)
3.	Temi spins a coin, biased towards heads. If the probability of spinning head is 0.65, find the probability that	at
	Temi spins her third head on her sixth spin.	(2)

-	

1.	
Negative Binomial, $p = 0.60$, $r = 5$ P($X = 8$) = 7 C ₄ × 0.60 ⁵ × 0.40 ³	M1
= 0.17418	A1

2.

Negative Binomial, $p = 0.3$, $r = 2$	M1
$P(X = 6) = {}^{5}C_{1} \times 0.3^{2} \times 0.7^{4}$	1411
=0.108045	A1

3.

Negative Binomial, $p = 0.65$, $r = 3$ $P(X = 6) = {}^{5}C_{2} \times 0.65^{3} \times 0.35^{3}$	M1
=0.117745	A1

Topic: Mean and Variance for Negative Binomial Distribution (4)

Chapter Reference: Further Statistics 1, Chapter 3

1.	The probability that John wins a coconut in a game at the fair is 0.15.	
	John plays a number of games.	
a.	Find the probability of John winning his second coconut on his 7 th game.	(2)
b.	Find the expected number of games John would need to play in order to win 3 coconuts.	(1)
c.	State two assumptions that you made in part a.	(2)
	Sue plays the same game, but has a different probability of winning a coconut. She plays until she has won	1 <i>r</i>
	coconuts. The random variable G represents the total number of games Sue plays.	
d.	Given that the mean and the standard deviation of G are 18 and 6 respectively, determine whether John or	
	Sue has the greater probability of winning a coconut in a game.	(5)

1.

$\binom{6}{1}(0.15)(0.85)^5(0.15)$	M1
= 0.05990	A1

1b.

$\frac{3}{0.15} = 20$	B 1
-----------------------	------------

1c.

Probability that John wins a coconut in a game is constant	B1
Games are independent	B 1

1d.

$\frac{r}{p} = 18$	B1
$\frac{r(1-p)}{p^2} = 36$	B 1
18(1-p) = 36p	M1
$p = \frac{1}{3} > 0.15$	A1
Sue has the greater probability of winning a coconut game	A1

Topic: Geometric and Negative Binomial Distribution (5)

Chapter Reference: Further Statistics 1, Chapter 3

1.	each attempt, the probability that the fire will light is 0.3 independent of all other attempts. Find the	
	probability that	(4)
a.	The fire lights on the 5 th attempt,	(2)
b.	Harry needs more than 1 attempt but fewer than 5 attempts to light the fire.	(3)
2.	In each round of a game, four fair coins are spun.	
a.	Find the probability that all four coins show the same result.	(2)
b. 	Find the probability that all four coins show the same result for the third time on the sixth trial.	(3)

-1	
	9

$0.7^4 \times 0.3 \text{ alone}$	M1
$= 0.0720 \text{ (3 sf) or } \frac{7203}{100000} $ (oe)	A1

1b.

$(0.7 + 0.7^2 + 0.7^3) \times 0.3$ 1 term omitted or wrong or extra	M2 (M1)
$= 0.4599 \text{ or } 0.460 \text{ (3 sf) or } \frac{4599}{10000} $ (oe)	A1

2a.

$(\frac{1}{2})^3$	M1
$=\frac{1}{8}=0.125$	A1

2b.

<i>X</i> ∼ Negative B(3,0.125)	M1
$P(X = 6) = {5 \choose 2} \times (0.125)^3 \times (0.875)^3$	M1
= 0.0131 (4 d.p.)	A1

