

Topic: The Method of Differences (1)

Chapter Reference: Core Pure 2, Chapter 2

10 minutes

1.	Given that $\frac{r+1}{r+2}$	$-\frac{r}{r+1} =$	$=\frac{1}{(r+1)(r+2)},$	find an expression, in terms of n , for	(4)
				$\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots + \frac{1}{(n+1)(n+2)}$.	

2.	Given that $\frac{1}{r} - \frac{1}{r+2} = \frac{2}{r(r+2)}$, find an expression, in terms of n , for	(5)

 $\frac{2}{1\times 3} + \frac{2}{2\times 4} + \dots + \frac{2}{n(n+2)}$.

 		

1. Either

$\frac{2}{3} - \frac{1}{2} + \frac{3}{4} - \frac{2}{3} \dots \frac{n+1}{n+2} - \frac{n}{n+1}$ Express terms as differences	M1
At least first two and last term correct	A1
Show or imply that pairs of terms cancel	M1
$\frac{n+1}{n+2} - \frac{1}{2}$ Obtain correct answer in any form	A1

Or

State that $\sum_{r=1}^{n} u_r = f(n+1) - f(1)$	M2
Each term correct	A1A1

2.

Express terms as differences	M1
Express 1 st 3 (or last 3) terms so that cancelling occurs	M1
Obtain $1 + \frac{1}{2}$	A1
Obtain $-\frac{1}{n+2}$, $-\frac{1}{n+1}$	A1
$\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2}$ Obtain correct answer in any form	A1

Topic: Higher Derivatives (2)

Chapter Reference: Core Pure 2, Chapter 2

1. $y = x^3 e^{2x}$. Find:	
a. $\frac{dy}{dx}$	(2
b. $\frac{d^2y}{dx^2}$	(2
c. $\frac{d^3y}{dx^3}$	(2
$d. \frac{d^4y}{dx^4}$	(2
dx^4	
e. $\frac{d^5y}{dx^5}$	(2

1

1.		
a	$=(2x+1)e^{2x}$	A2
b	$= (4x+4)e^{2x}$	A2
c	$= (8x+12)e^{2x}$	A2
d	$=(16x+32)e^{2x}$	A2
e	$=(32x+80)e^{2x}$	A2

Topic: Maclaurin Series (3)

Chapter Reference: Core Pure 2, Chapter 2

1.	It is given that $f'(x) =$	$\tanh^{-1}(\frac{1-x}{2+x})$, for $x > 1$	$-\frac{1}{2}$.
----	----------------------------	---	------------------

a. Show that
$$f'(x) = -\frac{1}{1+2x}$$
, and find $f''(x)$. (6)

b.	Show that the first three terms of the Maclaurin series for $f(x)$ can be written as $\ln a + bx$	$x + cx^2$, for
	constants a, b and c to be found.	(4)

-	
-	

1a

	3.54
Attempt quotient/product on bracket	M1
Get $-3/(2+x)^2$ May be implied	A1
Use Formulae Booklet or derive from $\tanh y = (1-x)/(2+x)$ Attempt \tanh^{-1} part in terms of x	M1
Get $\frac{-3}{(2+x)^2} \cdot \frac{1}{1-((1-x)/(2+x))^2}$	A1
Clearly tidy to A.G.	A1
Get $f''(x) = 2/(1+2x)^2$	B1

OR

Use reasonable ln definition	M1
Get $y=\frac{1}{2}\ln((1-k)/(1+k))$ for $k=(1-x)/(1+2x)$.	A1
Tidy to $y = \frac{1}{2} \ln(3/(1+2x))$	A1
Attempt chain rule	M1
Clearly tidy to A.G.	A1
Get $f''(x)$	B 1

1b.

Attempt f(0), f '(0) and f "(0)	M1
Get $\tanh^{-1}\frac{1}{2}$, -1 and 2	A1
Replace $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3 \ (= \ln \sqrt{3})$	B1
Get $\ln\sqrt{3} - x + x^2$	A1

Topic: Series Expansions of Compound

Functions (4)

Chapter Reference: Core Pure 2, Chapter 2

1. Use the Maclaurin series, together with a suitable substitution, to sho	v that:
--	---------

a.
$$(1-3x)\ln(1+2x) = 2x - 8x^2 + \frac{26}{3}x^3 - 12x^4 + \cdots$$
 (3)

b.
$$e^{2x} \sin x = x + 2x^2 + \frac{11}{6x^3} + x^4 + \cdots$$
 (3)

c.
$$\sqrt{1+x^2}e^{-x} = 1 - x + x^2 - \frac{2}{3}x^3 + \frac{1}{6}x^4 + \cdots$$
 (3)

1a.

Substitution of $2x$	A1
Use of standard Maclaurin expansion formula	M1
$2x - 8x^2 + \frac{26}{3}x^3 - 12x^4 + \cdots$	A1

1b.

Substitution of 2 <i>x</i>	A1
Use of standard Maclaurin expansion formula	M1
$x + 2x^2 + \frac{11}{6}x^3 + x^4 + \cdots$	A1

1c.

Substitution of x^2	A1
Use of standard binomial expansion formula	M1
$1 - x + x^2 - \frac{2}{3}x^3 + \frac{1}{6}x^4 + \cdots$	A1

Topic: Series Expansions of Compound

Functions (5)

Chapter Reference: Core Pure 2, Chapter 2

1. Given	that $f(x) = e^{\sin x}$,	
a.	Find $f'(0)$ and $f''(0)$.	(4)
b.	Hence find the first three terms of the Maclaurin series for $f(x)$.	(2)

1a.

Reasonable attempt at chain rule	M1
Reasonable attempt at product/quotient rule	M1
Correctly get $f'(0) = 1$	A1
Correctly get $f''(0) = 1$	A1

1b.

Reasonable attempt at Maclaurin with their	M1
values	1411
Get $1 + x + \frac{1}{2}x^2$	A1

