

Topic: Momentum and Impulse (1)

Chapter Reference: Further Mechanics 1, Chapter 1

8 minutes

Don't risk it, draw a diagram!

1. A particle P of mass 3 kg is moving with a speed of 8 ms ⁻¹ in a straight horizontal line when it collides with particle Q , of mass 4 kg, which is moving in the opposite direction with speed 1.5 ms ⁻¹ . After the collision, the direction of motion of P is unchanged and it moves with a speed of 2 ms ⁻¹ . The direction of motion of Q is reversed. Find the speed of Q after the collision. (3)
2. An ice hockey puck, of mass 0.2 kg, is moving along smooth horizontal ice with a speed of 10 m s-1 when it receives a direct hit from a stick which reverses its direction and increases its speed to 15 m s-1. Calculate the magnitude of the impulse exerted by the stick on the puck. (2)
Shug Maths

1.

$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$	M1
$3 \times 8 + 4 \times -1.5 = 3 \times 2 + 4v$	M1
$v = 3 \text{ ms}^{-1}$	A1

2.

I = m(v - u)	M1
I = 0.2(15 - (-10)) = 5 Ns	A1

Topic: Momentum and Impulse (2)

Chapter Reference: Further Mechanics 1, Chapter 1

8 minutes

1. A particle *A* of mass 4 kg is moving with velocity $(3\mathbf{i} + 5\mathbf{j})$ m s⁻¹ on horizontal ground when it collides with a second particle *B*, with mass 2 kg, which is moving with velocity $(-2\mathbf{i} + 4\mathbf{j})$ m s⁻¹. As a result of the collision, *B* is brought to rest. Find the speed and direction of *A* after the collision. (6)

·	
·	
	-

1.

Using conservation of linear momentum	M1
$4(3\mathbf{i} + 5\mathbf{j}) + 2(-2\mathbf{i} + 4\mathbf{j}) = 4v$	A1
$12\mathbf{i} + 20\mathbf{j} - 4\mathbf{i} + 8\mathbf{j} = 4v$	711
$v = \frac{8i + 28j}{4} = 2\mathbf{i} + 7\mathbf{j}$	A1
Speed of $A = \sqrt{2^2 + 7^2} = \sqrt{53} = 7.23 ms^{-1}$	A1
The direction: $\theta = \tan^{-1}(\frac{7}{2})$	M1
$\theta = 74.1^{\circ}$	A1
So A makes an angle of 74.1° with the unit vector i	AI

Topic: Momentum and Impulse (3)

Chapter Reference: Further Mechanics 1, Chapter 1

o minutes

1. Particle P has ma	ss 3 kg and particle	Q has mass m kg.
----------------------	----------------------	------------------

The particles are moving in opposite directions along a smooth horizontal plane when they collide directly. Immediately before the collision, the speed of P is 4 ms⁻¹ and the speed of Q is 3 ms⁻¹.

In the collision the direction of motion of P is unchanged and the direction of motion is Q is reversed. Immediately after the collision, the speed of P is 1 ms⁻¹ and the speed of Q is 1.5 ms⁻¹.

immediately after the comploin, the speed of 1 is 1 ins and the speed of 2 is 1.5 ins .	
a. Find the magnitude of the impulse exerted on P in the collision.	(3)
b. Find the value of <i>m</i> .	(3)

1a.

Consider P and use $I = mv - mu$	M1
$Take \leftarrow = +$	
I = 3(-1) - 3(-4)	M1
I = 9 Ns	A1

1b.

Consider Q and use $I = mv - mu$	M1
$Take \rightarrow = +$	1411
9 = m(1.5) - m(-3) 9 = 1.5m + 3m	
9 = 1.5m + 3m	M1
9 = 4.5m	
m=2	A1

Topic: Momentum and Impulse (4)

Chapter Reference: Further Mechanics 1, Chapter 1

8 minutes

1. Two particles P and Q have masses $4m$ and m respectively. The particles are moving towards each of a smooth horizontal plane and collide directly. The speeds of P and Q immediately before the collision are $2u$ and $5u$ respectively. Immediately af collision, the speed of P is $\frac{1}{2}u$ and its direction of motion is reversed. a. Find the speed and direction of Q after the collision	
	(4) (3)

1a.

$4m(2u) - m(5u) = -4m(\frac{1}{2}u) + mv$	M1
3mu = -2mu + mv	M1
v = 5u	A1
Opposite direction	A1

<u>1b.</u>

Use of $I = mv - mu$	M1
$I = 4m(\frac{1}{2}u2u)$ or $I = m(5u5u)$	M1
=10 mu	A1

Topic: Momentum and Impulse (5)

Chapter Reference: Further Mechanics 1, Chapter 1

6 minutes

1. A tennis ball of mass 0.1 kg is hit by a racquet. Immediately before being hit, the ball has a velocity 30 I ms ⁻¹ . The racquet exerts an impulse of $(-2\mathbf{i} - 4\mathbf{j})$ Ns on the ball.		
By modelling the ball as a particle, find the velocity of the ball immediately after being hit.	l)	
	—	
	_	
	—	
	—	
	—	

1.

Use of $m(v - u) = I$	M1
$0.1 \times (v - 30\mathbf{i}) = -2\mathbf{i} - 4\mathbf{j}$	M1
Solve for <i>v</i> :	M1
$0.1v = 3\mathbf{i} - 2\mathbf{i} - 4\mathbf{j} = \mathbf{i} - 4\mathbf{j}$	WII
$v = 10\mathbf{i} - 40\mathbf{j}$	A1

