A-Level Starter Activity

Topic: Magnitude and Direction of Vectors

Chapter Reference: Pure 1, Chapter 11

minutes

1. Find a vector of magnitude 26 in the direction 5i + 12j.	(2)
2. Find a unit vector in the direction $\binom{4}{3}$	(2)
3. Given that $m = 2\mathbf{i} + \gamma \mathbf{j}$ and $n = \mu \mathbf{i} - 5\mathbf{j}$, find the values of γ and μ such that $m + n = 3\mathbf{i} - \mathbf{j}$	(3)
4. Given that $r = 6\mathbf{i} + c\mathbf{j}$, where c is a positive constant, find the value of c such that, $ r = 10$	(3)

Solutions

1.

$ 5i + 12j = \sqrt{25 + 144} = 13$	M1
$\frac{26}{13} \left(5i + 12j \right) = 10i + 24j$	M1

2.

$\left {4 \choose 3} \right = \sqrt{16 + 9} = 5$	M1
$\frac{1}{5}\binom{4}{3}$	M1

3.

$(2\mathbf{i} + \gamma \mathbf{j}) + (\mu \mathbf{i} - 5\mathbf{j}) = 3\mathbf{i} - \mathbf{j}$	M1
$\begin{vmatrix} \gamma - 5 = -1 \\ \gamma = 4 \end{vmatrix}$	M1
$2 + \mu = 3$ $\mu = 1$	M1

4.

$36 + c^2 = 10^2 = 100$	M1
$c^2 = 64$	M1
c > 0, therefore $c = 8$	M1

A-Level Starter Activity

Topic: Vectors

Chapter Reference: Pure 1, Chapter 11

minutes

parallel vectors.	Bu, where u and v are non-
The point M is the mid-point of OA and the point N is the point on AB such that $AN:N$	VB=1:2.
a. Find \overrightarrow{OM} and \overrightarrow{ON}	(3)
b. Prove that C , M and N are collinear.	(3)
2. The points O , A , B and C are such that $\overrightarrow{OA} = 4m$, $\overrightarrow{OB} = 4m + 2n$ and $\overrightarrow{OC} = 2m + 2n$	-3n, where m and n are non
parallel vectors. a. Find an expression for \overrightarrow{BC} in terms of m and n . The point M is the mid-point of OC .	- 3 <i>n</i> , where <i>m</i> and <i>n</i> are non (2) (4)
2. The points O , A , B and C are such that $OA = 4m$, $OB = 4m + 2n$ and $OC = 2m $	(2)
parallel vectors. a. Find an expression for \overrightarrow{BC} in terms of m and n . The point M is the mid-point of OC .	(2)
parallel vectors. a. Find an expression for \overrightarrow{BC} in terms of m and n . The point M is the mid-point of OC .	(2)
parallel vectors. a. Find an expression for \overrightarrow{BC} in terms of m and n . The point M is the mid-point of OC .	(2)
parallel vectors. a. Find an expression for \overrightarrow{BC} in terms of m and n . The point M is the mid-point of OC .	(2)
parallel vectors. a. Find an expression for \overrightarrow{BC} in terms of m and n . The point M is the mid-point of OC .	(2)

Solutions

1a.

$\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OA} = 3\mathbf{u} - 2\mathbf{v}$	M1
$\overrightarrow{AB} = (3u - v) - (6u - 4v) = 3v - 3u$	M1
$\overrightarrow{ON} = \overrightarrow{OA} + \frac{1}{3}\overrightarrow{AB}$	
$= (6u - 4v) + \frac{1}{3}(3v - 3u)$	M1
=5u-3v	

1b.

$\overrightarrow{CM} = (3u - 2v) - (v - 3u) = 6u - 3v$	M1
$\overrightarrow{CN} = (5u - 3v) - (v - 3u) = 8u - 4v$	M1
$\overrightarrow{CN} = \frac{4}{3} \overrightarrow{CM}$	
Therefore, \overrightarrow{CN} and \overrightarrow{CM} are parallel and have a common point C .	M1
Therefore, C, M, N are collinear.	

2a.

(2m+3n)-(4m+2n)	M1
= n - 2m	M1

2b.

$\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OC} = \mathbf{m} + \frac{3}{2}\mathbf{n}$	M1
$\overrightarrow{AM} = \left(\boldsymbol{m} + \frac{3}{2}\boldsymbol{n}\right) - 4\boldsymbol{m} = \frac{3}{2}\boldsymbol{n} - 3\boldsymbol{m}$	M1
Therefore, $\overrightarrow{AM} = \frac{3}{2}\overrightarrow{BC}$	M1
AM is parallel to BC .	M1

A-Level Starter Activity

Topic: Position Vectors

Chapter Reference: Pure 1, Chapter 11

5 minutes

1. Relative to a fixed origin O, the points A and B have position vectors $\binom{3}{6}$ and $\binom{-5}{2}$ respectively. Find	l,
a. The vector \overrightarrow{AB}	(1
b. $ \overrightarrow{AB} $	(2
c. The position vector of the mid-point of AB	(2
d. The position vector of the point C such that $OABC$ is a parallelogram	(1

Solutions

1a.

14.	
$\overrightarrow{AB} = \begin{pmatrix} -5 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \end{pmatrix}$	M1

1b.

$ \overrightarrow{AB} = \sqrt{64 + 16}$	M1
$=\sqrt{80}$	M1
$=4\sqrt{5}$	IVII

1c.

$ \overrightarrow{OC} + \frac{1}{2}\overrightarrow{AB} $ $ = \binom{3}{6} + \frac{1}{2}\binom{-8}{-4} $	M1
$=$ $\binom{-1}{4}$	M1

1d.

$\overrightarrow{OC} = \overrightarrow{AB}$	
Position Vector = $\begin{pmatrix} -8 \\ -4 \end{pmatrix}$	M1

